Synthesis, Crystal Structure, and Photoluminescent Properties of a Series of LnIII–CuI Heterometallic Coordination Polymers Based on Cu4I3 Clusters and Ln–ina Rod Units
Chengcai Xia A , Gang Xiong A B , Lixin You A , Baoyi Ren A , Shuju Wang A and Yaguang Sun A BA Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, and Laboratory of Coordination Chemistry, University of Chemical Technology, Shenyang 100142, China.
B Corresponding authors. Email: xg@syuct.edu.cn; sunyaguang@syuct.edu.cn
Australian Journal of Chemistry 70(8) 943-951 https://doi.org/10.1071/CH17076
Submitted: 7 February 2017 Accepted: 7 April 2017 Published: 5 May 2017
Abstract
A novel series of LnIII–CuI heterometallic coordination polymers (HCPs) {[Ln2Cu4I3(ina)7(DMA)2]n·nDMA, Ln = La (1), Ce (2), Pr (3) Nd (4), Sm (5), Eu (6), Gd (7), Tb (8), Dy (9) Ho (10), Er (11), Yb (12), Hina = isonicotinic acid, DMA = N,N-dimethylacetamide} were synthesised by a solvothermal reaction. The structures of compounds 1–12 were characterised by elemental analysis, FT-IR spectroscopy, thermogravimetric analysis, and powder X-ray diffraction. Single crystal X-ray diffraction studies revealed that 1–12 are isomorphous and are 3D heterometallic coordination polymers based on inorganic Cu4I3 clusters and Ln2(ina)7(DMA) rod units. In addition, the luminescent properties of compounds 5–9 have been investigated in detail. All of them exhibited green light emission due to the synergistic effects of characteristic emissions of lanthanide ions and iodide-to-copper charge transfer.
References
[1] D. Lee, D. J. Williams, S. C. Vogel, T. Proffen, J. D. Thompson, L. L. Daemen, S. Park, Curr. Appl. Phys. 2016, 16, 1100.| Crossref | GoogleScholarGoogle Scholar |
[2] N. Domingo, E. Bellido, D. Ruiz-Molina, Chem. Soc. Rev. 2012, 41, 258.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFKntrfN&md5=8f85cb44f5f4bc755999af8f08e03544CAS |
[3] K. Ariga, H. Ito, J. P. Hill, H. Tsukube, Chem. Soc. Rev. 2012, 41, 5800.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFKjurzM&md5=8bc335678cd49895a0551c4b4cda944bCAS |
[4] Y. N. Sun, G. Xiong, V. Dragutan, I. Dragutan, F. Ding, Y.-G. Sun, Inorg. Chem. Commun. 2015, 62, 103.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhslyqtrrM&md5=b22aea35236a4118500d211b2d9068bbCAS |
[5] A. Granja, J. A. Alonso, I. Cabria, M. J. López, RSC Adv. 2015, 5, 47945.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXnvF2qtrk%3D&md5=fb6fb3477f73bc84761588025016e450CAS |
[6] M. Valenti, M. P. Jonsson, G. Biskos, A. Schmidt-Ott, W. A. Smith, J. Mater. Chem. A 2016, 4, 17891.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhs1amu7zJ&md5=43cde094f85697d639381d9a2227b764CAS |
[7] (a) R. Sato, K. Suzuki, T. Minato, K. Yamaguchi, N. Mizuno, Inorg. Chem. 2016, 55, 2023.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XjtVOls7c%3D&md5=461fb9f69a278f89ffa46345b9bf5a4aCAS |
(b) J. B. Peng, Q. C. Zhang, X. J. Kong, Y. Z. Zheng, Y. P. Ren, L. S. Long, R. B. Huang, L. S. Zheng, Z. P. Zheng, J. Am. Chem. Soc. 2012, 134, 3314.
| Crossref | GoogleScholarGoogle Scholar |
[8] C. J. Chen, N. Wang, Y. Long, J. Y. Gao, W. P. Xie, X. R. Ran, S. T. Yue, CrystEngComm 2013, 15, 4611.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnvV2gtbs%3D&md5=6ea3e42bc763b73fac8a3b8cfc654c6bCAS |
[9] R. T. Dong, X. L. Chen, X. Cui, S.-S. Chen, M. Y. Shen, C. W. Li, Q. H. Li, M.-Y. Hu, L.-F. Huang, H. Deng, CrystEngComm 2016, 18, 5547.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XpsVOmu7o%3D&md5=2b689cf17cd4de0dd90d228e80cd90e2CAS |
[10] Y. G. Sun, G. Xiong, M. Y. Guo, F. Ding, S. J. Wang, P. F. Smet, D. Poelman, E. J. Gao, F. Verpoort, Dalton Trans. 2012, 41, 7670.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotFGls74%3D&md5=35e604e5aef4cbe45a27293e69606b91CAS |
[11] F. Farinella, L. Maini, P. P. Mazzeo, V. Fattori, F. Monti, D. Bragaa, Dalton Trans. 2016, 45, 17939.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhs1eks77L&md5=0f593b04c65993737d5b2632278961a0CAS |
[12] Y. Kang, W.-H. Fang, L. Zhang, J. Zhang, Chem. Commun. 2015, 51, 8994.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmvFansLk%3D&md5=9e572a86e539c0373e6e5ac403f69808CAS |
[13] B. J. Xin, G. Zeng, L. Gao, Y. Li, S. H. Xing, J. Hua, G. H. Li, Z. Shi, S. H. Feng, Dalton Trans. 2013, 42, 7562.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsFaqsLg%3D&md5=3dad09654cc9164c5672b7f2797b510eCAS |
[14] C.-W. Zhao, J.-P. Ma, Q.-K. Liu, X.-R. Wang, Y. Liu, J. Yang, J.-S. Yang, Y.-B. Dong, Chem. Commun. 2016, 52, 5238.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XivVKnsLk%3D&md5=2641ba52cbf935c15e8024dd9889ae2eCAS |
[15] S. W. Zhang, P. Cheng, CrystEngComm 2015, 17, 4250.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmsFeltrw%3D&md5=70174775fe7f79f6375d8f69dffd5268CAS |
[16] A. Yadav, A. Kumar Srivastava, A. Balamurugan, R. Boomishankar, Dalton Trans. 2014, 43, 8166.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotFWhurg%3D&md5=d031efd51e6d81278f634b96639df6f1CAS |
[17] X. J. Yang, H. X. Li, Z. L. Xu, H.-Y. Li, Z.-G. Ren, J. P. Lang, CrystEngComm 2012, 14, 1641.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVGjtbk%3D&md5=6ded66e01d2a25afe89042048b4f0d7dCAS |
[18] W. H. Fang, G. Y. Yang, CrystEngComm 2013, 15, 9504.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs12mu73M&md5=18cb9c4888bd948ba519eb88813027a5CAS |
[19] R. H. Zeng, G. Peng, Y. C. Qiu, S. R. Zheng, W. S. Li, W. X. Zhang, H. Deng, Y. P. Cai, CrystEngComm 2011, 13, 3910.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmslajtrg%3D&md5=cddfb288d2e05c1cc231917d4f530c6aCAS |
[20] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsFSnsbg%3D&md5=152b232aadeaa73225d2029119611dc4CAS |
[21] (a) L. Palatinus, G. Chapuis, J. Appl. Cryst. 2007, 40, 786.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnslWqtrg%3D&md5=371d5f904cb15eff24165a8fb7fdba04CAS |
(b) L. Palatinus, A. Van der Lee, J. Appl. Cryst. 2008, 41, 975.
| Crossref | GoogleScholarGoogle Scholar |
(c) L. Palatinus, S. J. Prathapa, S. Van Smaalen, J. Appl. Cryst. 2012, 45, 575.
| Crossref | GoogleScholarGoogle Scholar |
[22] G. M. Sheldrick, Acta Crystallogr. Sect. A 2008, 64, 112.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVGhurzO&md5=933d4ded754510f3d6dd59e45c48aab3CAS |
[23] E. E. Delbridge, D. T. Dugah, C. R. Nelson, B. W. Skelton, A. H. White, Dalton Trans. 2007, 143.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlemtbzE&md5=cdc2baa7b1e80ad67132e8cb8b54adc6CAS |
[24] S. Sculfort, P. Braunstein, Chem. Soc. Rev. 2011, 40, 2741.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVWjtbs%3D&md5=c48817f7e3feb692ae1ad2c4e67bbdd6CAS |
[25] (a) R. A. de Jesus, L. L. da Luz, D. O. Santos, J. A. Costa, S. Navickiene, C. C. Gatto, S. A. Junior, M. E. de Mesquita, Dalton Trans. 2015, 44, 17318.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVaqsbjO&md5=b0c8f5e15be756c5ac07c6ba13c1da5cCAS |
(b) P. Falcaro, S. Furukawa, Angew. Chem. Int. Ed. 2012, 51, 8431.
| Crossref | GoogleScholarGoogle Scholar |
(c) Y. L. Gai, K. C. Xiong, L. Chen, Y. Bu, X. J. Li, F. L. Jiang, M. C. Hong, Inorg. Chem. 2012, 51, 13128.
| Crossref | GoogleScholarGoogle Scholar |
[26] J. P. Safko, J. E. Kuperstock, S. M. McCullough, A. M. Noviello, X. Li, J. P. Killarney, C. Murphy, H. H. Patterson, C. A. Bayse, R. D. Pike, Dalton Trans. 2012, 41, 11663.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlamsLvM&md5=faabbb25affaf4dea894ab3f5d75f419CAS |
[27] M. Guzik, E. Tomaszewicz, Y. Guyot, J. Legendziewicz, G. Boulon, J. Mater. Chem. C 2015, 3, 8582.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFKitrbI&md5=9b7a70377e9a08576e3d1a773ddc475eCAS |
[28] (a) W. I. O’Malley, E. H. Abdelkader, M. L. Aulsebrook, R. Rubbiani, C. T. Loh, M. R. Grace, L. Spiccia, G. Gasser, G. Otting, K. L. Tuck, B. Graham, Inorg. Chem. 2016, 55, 1674.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XitVyns7c%3D&md5=d1f27e144d97c8fc6d3a3a124b2aa7f8CAS |
(b) P. A. Smith, C. Crawford, N. Beedoe, Z. Assefa, R. E. Sykora, Inorg. Chem. 2012, 51, 12230.
| Crossref | GoogleScholarGoogle Scholar |
(c) W. Wang, J. Yang, R. M. Wang, L. L. Zhang, J. F. Yu, D. F. Sun, Cryst. Growth Des. 2015, 15, 2589.
| Crossref | GoogleScholarGoogle Scholar |
[29] S. Biju, M. L. P. Reddy, A. H. Cowley, K. V. Vasudevan, Cryst. Growth Des. 2009, 9, 3562.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtl2msbw%3D&md5=d18a4a9c2ee0bedf0703f6fe09d8339bCAS |
[30] (a) K. G. Sharma, N. R. Singh, New J. Chem. 2013, 37, 2784.
| Crossref | GoogleScholarGoogle Scholar |
(b) J. P. Costes, S. Titos-Padilla, I. Oyarzabal, T. Gupta, C. Duhayon, G. Rajaraman, E. Colacio, Inorg. Chem. 2016, 55, 4428.
| Crossref | GoogleScholarGoogle Scholar |
[31] X. C. Shan, F. L. Jiang, D. Q. Yuan, H. B. Zhang, M. Y. Wu, L. Chen, J. Wei, S. Q. Zhang, J. Pan, M. C. Hong, Chem. Sci. 2013, 4, 1484.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtlynu7k%3D&md5=b9e8ecd674df3796077621f2424a16feCAS |