Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

A Novel Eco-Friendly Scale and Corrosion Inhibitor Modified by β-Cyclodextrin

Mingjin Tang A C , Jianbo Li A C , Zhengrong Ye B , Zimin Kou A and Luoping Fu A
+ Author Affiliations
- Author Affiliations

A College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China.

B Research Institute of Petroleum Exploration and Development, Beijing 100083, China.

C Corresponding authors. Email: tangmingjin@outlook.com; ljb0418@163.com

Australian Journal of Chemistry 70(8) 933-942 https://doi.org/10.1071/CH16720
Submitted: 17 December 2016  Accepted: 4 April 2017   Published: 23 May 2017

Abstract

A polymer, β-MEA, was synthesised from β-cyclodextrin (β-CD), 3-chloro-2-methylpropene (MAC), epoxysuccinic acid (ESA), and 2-acrylamido-2-methyl propane sulfonic acid (AMPS) with a (NH4)2S2O8-NaHSO3 redox initiator system by aqueous solution radical polymerisation. β-MEA was characterised by means of IR spectroscopy, time-of-flight mass spectrometry, gel permeation chromatography, and thermogravimetric analysis. Its structure, molecular weight, thermal stability, scale and corrosion inhibition performance and mechanism were investigated. The results verified that β-MEA achieves a better scale inhibition efficiency for BaSO4 compared with poly(aspartic acid) (PASP) (100 % cf. 94.9 % at a concentration of 20 mg L−1) and a better corrosion inhibition efficiency of N80 carbon steel in saline water compared with PESA (91.2 % cf. 79.7 % at a concentration of 1 g L−1). The BaSO4 was characterised by scanning electron microscopy (SEM) and X-ray diffraction to investigate the crystal morphology of the scale. Primary research on the mechanism for corrosion inhibition was carried by SEM-chemical analysis.


References

[1]  X. Sun, G. Jiang, P. L. Bond, J. Keller, Z. Yuan, Water Res. 2015, 70, 279.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFOms73N&md5=f12d4280bbacbf4e7e8faeb1c0fb69ecCAS |

[2]  T. H. Tran, A. Vimalanandan, G. Genchev, J. Fickert, K. Landfester, Adv. Mater. 2015, 27, 3825.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXovVCgu7Y%3D&md5=fc338d0b13adefc5368576ce56a031dcCAS |

[3]  Kh. Rahmani, R. Jadidian, S. Haghtalab, Desalination 2016, 393, 174.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtlCiur%2FK&md5=ff5a2ee1a74d5a2885d78c9dde43d241CAS |

[4]  N. Kıcır, G. Tansug, M. Erbil, T. Tüken, Corros. Sci. 2016, 105, 88.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  H. Liu, T. Gu, G. Zhang, W. Wang, S. Dong, Y. Cheng, H. Liu, Corros. Sci. 2016, 105, 149.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xht1Crurk%3D&md5=c48a96dbc859caa6bf9a7bac43727d0cCAS |

[6]  I. Drela, P. Falewicz, S. Kuczkowska, Water Res. 1998, 32, 3188.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmtVGlt7g%3D&md5=bbd9a4fad2a089c6ac8564085f8f20f6CAS |

[7]  E. J. Mackay, A. P. Matharu, K. S. Sorbie, M. M. Jordan, SPE Prod. Facil. 2000, 15, 107.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsVyksLg%3D&md5=db049aec48e0d0931dce55dec2c43a34CAS |

[8]  A. L. Chong, J. I. Mardel, M. Forsyth, D. R. Macfarlane, A. E. Somers, ACS Sustainable Chem. Eng. 2016, 4, 1746.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XlvFKlsQ%3D%3D&md5=176602c2dd77575a9cc5366fb4e4dd7cCAS |

[9]  C. J. Zou, L. Zhang, Y. J. Cui, Y. Xing, J. Ge, Petrol. Sci. Technol. 2013, 31, 1967.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlemsLrM&md5=e73dd216c2b0822388a8659e37ed0520CAS |

[10]  L.-C. Wang, K. Cui, L.-B. Wang, H.-X. Li, S.-F. Li, Q.-L. Zhang, H.-B. Liu, Desalination 2016, 379, 75.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvVehurjO&md5=0fe734e9f7d949d82478ce2734de62b6CAS |

[11]  Y. Duan, F. Yu, D. Zhao, X. Cui, Z. Cui, Petrol. Sci. Technol. 2013, 31, 1959.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlemsrvE&md5=7041796c586c4dea506a948b90ea4e35CAS |

[12]  X. Liu, J. Li, Q. Zhu, J. Feng, Y. Li, J. Sun, J. Petrol. Sci. Eng. 2009, 66, 161.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlslWhsLk%3D&md5=a9794669a8b56f7f79e6f490ba35a55fCAS |

[13]  S. D. Zhu, A. Q. Fu, J. Miao, Z. F. Yin, G. S. Zhou, Corros. Sci. 2011, 53, 3156.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsFOrsL4%3D&md5=32476f4ca810248f4510256f1ae5c7e7CAS |

[14]  W.-Y. Shi, C. Ding, J.-L. Yan, X.-Y. Han, Z.-M. Lv, W. Leic, M.-Z. Xia, F.-Y. Wang, Desalination 2012, 291, 8.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktVamu78%3D&md5=72500f953e6267e7ee2f8fb419e54154CAS |

[15]  K. Zhang, B. Xu, W. Yang, X. Yin, Y. Liu, Y. Chen, Corros. Sci. 2015, 90, 284.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVygtL7N&md5=667aa094d4d2f86ff10818f92b4f52e0CAS |

[16]  C. Pillay, J. Lin, Corros. Sci. 2014, 80, 416.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFGitbbJ&md5=772e9fc36680195c45f24d3a6385c49fCAS |

[17]  J. B. Li, M. J. Tang, Z. R. Ye, L. L. Cheng, Y. Q. Zhou, J. Disper. Sci. Technol. 2017, 38, 661.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XitVyjtL%2FM&md5=462b1bc4cd64365360c8fd66f868ca25CAS |

[18]  H. Li, M. K. Hsieh, S. H. Chien, J. D. Monnell, D. A. Dzombak, Water Res. 2011, 45, 748.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1SqsrzE&md5=b3154b56b96388ac13982ef2eade4055CAS |

[19]  A. Vimalanandan, L. P. Lv, T. H. Tran, K. Landfester, D. Crespy, Adv. Mater. 2013, 25, 6980.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsF2nsr%2FN&md5=caf0643f886491de854c3e527adb1946CAS |

[20]  X. Guo, F. Qiu, K. Dong, X. Zhou, J. Qi, Y. Zhou, D. Yang, J. Ind. Eng. Chem. 2012, 18, 2177.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFWiurbN&md5=aa4838aefd7cd1247da75c82eb5c15feCAS |

[21]  G. Li, S. Guo, J. Zhang, Y. Liu, Desalination 2014, 351, 213.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlaqsrnP&md5=2737f9989565f16fde90775829078c81CAS |

[22]  M. Chaussemier, E. Pourmohtasham, D. Gelus, N. Pécoul, H. Perrot, Desalination 2015, 356, 47.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsl2gur%2FF&md5=d13d5a66c8f2270df5a06ebc334fc4daCAS |

[23]  R. Touir, N. Dkhireche, M. E. Touhami, M. Lakhrissi, B. Lakhrissi, Desalination 2009, 249, 922.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVWnsLfN&md5=31acb9f4afed2e785efdbe3d6eed827dCAS |

[24]  A. Ketsetzi, A. Stathoulopoulou, K. D. Demadis, Desalination 2008, 223, 487.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVKlsbg%3D&md5=94a6d9bdde3310ad03a745614c6ed5c7CAS |

[25]  I. Felhösi, E. Kálmán, P. Póczik, Russ. J. Electrochem. 2002, 38, 230.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  X. Gu, F. Qiu, X. Zhou, J. Qi, Y. Zhou, D. Yang, Q. Guo, X. Guo, J. Petrol. Sci. Eng. 2013, 109, 177.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1WmtrzI&md5=05f475bb91a3286666d3559b197268bcCAS |

[27]  H. Ma, X. Li, T. Yan, Y. Li, H. Liu, Y. Zhang, D. Wu, B. Du, Q. Wei, Sci. Rep. 2016, 6, 22059.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xjt1egt7w%3D&md5=8b6f4dcbb64a2dd22db84b49bdd5c576CAS |

[28]  Y. Wei, D. Y. Di Sun, Y. Liu, Y. Zhao, X. Li, S. Wang, J. Dou, X. Wang, A. Hao, D. Sun, Chem. Sci. 2012, 3, 2282.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotFGrs74%3D&md5=316d634c7cc781896a97b786d7e43e9bCAS |

[29]  Y. Liu, C. J. Zou, X. L. Yan, R. J. Xiao, T. Y. Wang, M. Li, Ind. Eng. Chem. Res. 2015, 54, 5664.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXnvFarsrk%3D&md5=09d4a0870e7b15a8a45b654dcfcdb4aeCAS |

[30]  SY/T 5673–1993, The Oil Industry Standard of the People’s Republic of China, 1993.

[31]  J. B. Li, M. J. Tang, L. M. Zhang, L. L. Chen, F. Fang, Petrochemical Technology 2015, 44, 1492.
         | 1:CAS:528:DC%2BC28XhvVOhug%3D%3D&md5=5e520758a806e423e10634dfc9cdfb40CAS |

[32]  SY/T 5273–2000, The Oil Industry Standard of the People’s Republic of China, 2000.

[33]  D. Daoud, T. Douadi, H. Hamani, S. Chafaa, M. Al-Noaimi, Corros. Sci. 2015, 94, 21.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXisVSjt78%3D&md5=01085ca115a9bb6ad7c357dfe9739828CAS |

[34]  H. Liu, T. Gu, Y. Lv, M. Asif, F. Xiong, G. Zhang, H. Liu, Corros. Sci. 2017, 117, 24.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhsVeqsro%3D&md5=28cbc98cb377d026aa42ae0efebc7bfcCAS |

[35]  B. Senthilmurugan, B. Ghosh, S. S. Kundu, M. Haroun, B. Kameshwari, J. Petrol. Sci. Eng. 2010, 75, 189.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVSkuw%3D%3D&md5=b8142753bea22903e717469f3a27ca72CAS |

[36]  Y. Liu, C. Zou, C. Li, L. Lin, W. Chen, Desalination 2016, 377, 28.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVyqtb%2FN&md5=9b4625d8334757196b003317f4cba276CAS |

[37]  D. Liu, W. Dong, F. Li, F. Hui, J. Lédion, Desalination 2012, 304, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlWls7vF&md5=7b5aee563e230ca14daf7bb73f08f0c5CAS |

[38]  A. B. BinMerdhah, J. Petrol. Sci. Eng. 2012, 90–91, 124.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  Y. Ma, F. Han, Z. Li, C. Xia, ACS Sustainable Chem. Eng. 2016, 4, 5046.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhtlehs7%2FE&md5=f212845302d4407f237d80da78159fc7CAS |

[40]  B. G. Ateya, B. M. Abo-Elkhair, I. A. Abdel-Hamid, Corros. Sci. 1976, 16, 163.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XltlalsbY%3D&md5=4357443a4c073cc405c8c8a7b9183492CAS |

[41]  J. Zhao, H. Duan, R. Jiang, Corros. Sci. 2015, 91, 108.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFarsr7K&md5=baa426073865767e76b2038cc7b06881CAS |

[42]  A. L. Chong, J. I. Mardel, M. Forsyth, D. R. Macfarlane, A. E. Somers, ACS Sustainable Chem. Eng. 2016, 4, 1746.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XlvFKlsQ%3D%3D&md5=176602c2dd77575a9cc5366fb4e4dd7cCAS |

[43]  T. Tsuru, S. Haruyama, B. Gijutsu, Journal of the Japanese Society of Corrosion Engineering 1978, 27, 573.
         | 1:CAS:528:DyaE1MXlsVygt74%3D&md5=c99fba15cacfc2ba7b735277681233b8CAS |

[44]  H. N. Shubha, T. V. Venkatesha, K. Vathsala, M. K. Pavitra, M. K. Kumar, ACS Appl. Mater. Interfaces 2013, 5, 10738.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1Cgs7rE&md5=d8896d03c0fc8a265f5b450782f44a83CAS |

[45]  M. K. Punith Kumar, V. T. Venkatarangaiah, M. K. Pavitra, A. N. Shetty, Phys. Scr. 2011, 84, 035601.
         | Crossref | GoogleScholarGoogle Scholar |

[46]  U. Trdan, J. Grum, Corros. Sci. 2014, 82, 328.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXislOitb0%3D&md5=59a166d8e33887926a4a1182ebbed996CAS |

[47]  S. J. Garcia, T. A. Markley, J. M. C. Mol, A. E. Hughes, Corros. Sci. 2013, 69, 346.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFKgsbw%3D&md5=ca51abb7d6376fdcfca674f59f890752CAS |

[48]  M. S. Rahman, G. A. Gagnon, Water Res. 2014, 48, 137.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFWmsLjN&md5=ff4faa53914f98a8f56f81af65d4b60fCAS |