Tunable Electromagnetic Enhancement of Gold Nanoparticle Arrays
Hailiang Huang A , Guobin Yi A B , Xihong Zu A , Benbin Zhong A , Wenjing Lin A , Minghai Zhang A and Hongsheng Luo AA School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, China.
B Corresponding author. Email: ygb702@163.com
Australian Journal of Chemistry 70(8) 917-922 https://doi.org/10.1071/CH17056
Submitted: 3 February 2017 Accepted: 19 March 2017 Published: 18 April 2017
Abstract
In this paper, triblock copolymer polyisoprene-block-polystyrene-block-poly(2-vinylpyridine) (PI-b-PS-b-P2VP) micelles containing HAuCl4 were spin-coated on silicon wafers followed by calcination to form gold nanoparticle arrays. Subsequently the surface optical performances of poly(3-hexylthiophene) (P3HT)-coated Au nanoparticle arrays were investigated. The particle size and the interparticle distance of the gold nanoparticle arrays could be controlled by adjusting the molar ratio of HAuCl4 precursor to vinyl pyridine units in PI-b-PS-b-P2VP and the spin speed during spin-coating. The results demonstrated that Au nanoparticle arrays with large nanoparticle size were able to produce strong electromagnetic field enhancement. Furthermore, the ratio of average particle size to average interparticle distance increased with decreasing spin speed, resulting in strong electromagnetic field enhancement for metal-enhanced fluorescence (MEF) and surface-enhanced Raman scattering (SERS).
References
[1] K. Watanabe, D. Menzel, N. Nilius, H. J. Freund, Chem. Rev. 2006, 106, 4301.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptlOltb8%3D&md5=995ef9e8aa1861aba5afce7e575e95cdCAS |
[2] Y. R. Fang, Y. Z. Li, H. X. Xu, M. T. Sun, Langmuir 2010, 26, 7737.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlslymtbo%3D&md5=ec9a01e1b826be08cffd3039ad841862CAS |
[3] M. Hernandez, G. Recio, R. J. Martin-Palma, J. V. Garcia-Ramos, C. Domingo, P. Sevilla, Nanoscale Res. Lett. 2012, 7, 364.
| Crossref | GoogleScholarGoogle Scholar |
[4] Y. Bu, S. Lee, ACS Appl. Mater. Interfaces 2012, 4, 3923.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtV2gsLrF&md5=8ac49ce787ade104d0d87730f68bec0dCAS |
[5] H. Cang, A. Labno, C. G. Lu, X. B. Yin, M. Liu, C. Gladden, Y. M. Liu, X. Zhang, Nature 2011, 469, 385.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnvVKhug%3D%3D&md5=348378d035d9e9f65b01056d8eef0336CAS |
[6] A. Sabur, M. Havel, Y. Gogotsi, J. Raman Spectrosc. 2008, 39, 61.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisFyntLo%3D&md5=34a19ff22d087bfc6ac586ca58ca017bCAS |
[7] J. D. Flynn, B. L. Haas, J. S. Biteen, J. Phys. Chem. C 2016, 120, 20512.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhs1ChtrjJ&md5=a836c502b5e5f5daf7c02361a87175d4CAS |
[8] C. D’Andrea, B. Fazio, P. G. Gucciardi, M. C. Giordano, C. Martella, D. Chiappe, A. Toma, F. Buatier de Mongeot, F. Tantussi, P. Vasanthakumar, F. Fuso, M. Allegrini, J. Phys. Chem. C 2014, 118, 8571.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXltF2luro%3D&md5=3686e273a95ea29dbe50e78f579c408eCAS |
[9] B. Abel, S. Coskun, M. Mohammed, R. Williams, H. E. Unalan, K. Aslan, J. Phys. Chem. C 2015, 119, 675.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVKqs7nO&md5=c8556667e8b420e64233b0825cb81f9aCAS |
[10] A. M. Gabudean, M. Focsan, S. Astilean, J. Phys. Chem. C 2012, 116, 12240.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmvFGguro%3D&md5=c8b0aa1271b74a6aa47d5c86c729fc4aCAS |
[11] M. H. Chowdhury, N. C. Lindquist, A. Lesuffleur, S. H. Oh, J. R. Lakowicz, K. Ray, J. Phys. Chem. C 2012, 116, 19958.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Gmsr%2FM&md5=c81fbb5a8dd927df927e4f74bf0efc34CAS |
[12] P. P. Pompa, L. Martiradonna, A. D. Torre, F. D. Sala, L. Manna, M. D. Vittorio, F. Calabi, R. Cingolani, R. Rinaldi, Nat. Nanotechnol. 2006, 1, 126.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1yjt7fI&md5=6ec438ef10009a83fc713a181e5f24f0CAS |
[13] Z. C. Liu, T. X. Chang, H. Y. Huang, T. B. He, ACS Appl. Mater. Interfaces 2015, 7, 25938.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhslCjtbnI&md5=0400d183fa886bd52897b42537bad744CAS |
[14] S. Fateixa, H. I. S. Nogueira, T. Trindade, Phys. Chem. Chem. Phys. 2015, 17, 21046.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmslGgt7s%3D&md5=6c33433fa0c356da0c67ad02ad3fb1ecCAS |
[15] X. Y. Wang, S. L. Li, P. B. Zhang, F. T. Lv, L. B. Liu, L. D. Li, S. Wang, Adv. Mater. 2015, 27, 6040.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVSltbzL&md5=d4a55059bd3912634e8b12ee483819feCAS |
[16] E. V. Canesi, M. Capsoni, L. Karnam, A. Lucotti, C. Bertarelli, M. D. Zoppo, J. Phys. Chem. C 2013, 117, 13197.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXovFWmur4%3D&md5=68958adc2b668a2abcb9c9e7a7e7529aCAS |
[17] Z. H. Cheng, G. Li, M. M. Liu, Sens. Actuators B 2015, 212, 495.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjtlCqsb8%3D&md5=9d17c1d0144fd77d58238dc9689180f0CAS |
[18] L. Lu, Y. X. Qian, L. H. Wang, K. K. Ma, Y. D. Zhang, ACS Appl. Mater. Interfaces 2014, 6, 1944.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVOjtrk%3D&md5=36d43ad5e85f0e47307c95a1c240bd0dCAS |
[19] Y. G. He, S. Y. Shi, N. Liu, Y. Y. Zhu, Y. S. Ding, J. Yin, Z. Q. Wu, RSC Adv. 2015, 5, 39697.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmvV2htL0%3D&md5=bda19b885c47c66ec6fe3f0a92fdc436CAS |
[20] Q. H. Guo, M. M. Xu, Y. X. Yuan, R. A. Gu, J. L. Yao, Langmuir 2016, 32, 4530.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XmsVKktLc%3D&md5=38aa3408a785ac42f04e6bfaf991b746CAS |
[21] H. Y. Guo, Z. Y. Zhang, B. S. Xing, A. Mukherjee, C. Musante, J. C. White, L. L. He, Environ. Sci. Technol. 2015, 49, 4317.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXksVeiurw%3D&md5=f73d2329b7315e5991d1a258eec94c38CAS |
[22] G. C. Zheng, L. Polavarapu, L. M. Liz-Marza’n, I. Pastoriza-Santosand, J. Pe’rez-Juste, Chem. Commun. 2015, 51, 4572.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFegsrbM&md5=b5c71174f1765b4fbb61d9ba46788c8fCAS |
[23] M. Auffan, J. Rose, M. R. Wiesner, J. Y. Bottero, Environ. Pollut. 2009, 157, 1127.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXis1eltbk%3D&md5=de8052ab1c8a96fef27a683dcfd93b67CAS |
[24] W. Hong, Y. Zhang, L. Gan, X. D. Chen, M. Q. Zhang, J. Mater. Chem. C 2015, 3, 6185.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXotlaltbg%3D&md5=ee995ff25cc8ac2e5a2a70e63da88c22CAS |
[25] K. Wong-ek, P. Eiamchai, M. Horprathum, V. Patthanasettakul, P. Limnonthakul, P. Chindaudom, N. Nuntawong, Thin Solid Films 2010, 518, 7128.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVOqur3K&md5=5c3df8d7e99eb83ee0a042b610a7a908CAS |
[26] K. Leong, M. T. Zin, H. Ma, M. Sarikaya, F. Huang, A. K. Y. Jen, ACS Appl. Mater. Interfaces 2010, 2, 3153.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVSis7vF&md5=79a94d121359f1a6b68c7fa5f3d978d6CAS |
[27] N. A. Abu Hatab, J. M. Oran, M. J. Sepaniak, ACS Nano 2008, 2, 377.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltlCksg%3D%3D&md5=f52a92030adfe490244783e02b0ed06eCAS |
[28] Y. X. Zhang, A. Padhyay, J. E. Sevilleja, R. L. Guerrant, C. D. Geddes, J. Phys. Chem. C 2010, 114, 7575.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksF2lsr0%3D&md5=4720910c9e4ea3bd3c461dbeb9689990CAS |
[29] Y. Hirai, H. Yabu, Y. Matsuo, K. Ijiro, M. Shimomura, Chem. Commun. 2010, 46, 2298.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjt1KhsLk%3D&md5=4fdde3be20b9db44c3f1916eb705ae31CAS |
[30] L. Shang, H. J. Chen, S. J. Dong, J. Phys. Chem. C 2007, 111, 10780.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvFejtr8%3D&md5=f83275641ab18f720d9b4118df76f57dCAS |
[31] Y. C. Tsai, P. C. Hsu, Y. W. Lin, T. M. Wu, Electrochem. Commun. 2009, 11, 542.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisFSgtL0%3D&md5=2c64c5b8ed23a39cb9959e3051b0c598CAS |
[32] B. B. Zhong, X. H. Zu, G. B. Yi, H. L. Huang, M. H. Zhang, H. S. Luo, J. Nanopart. Res. 2016, 18, 281.
| Crossref | GoogleScholarGoogle Scholar |
[33] I. Lombardi, P. L. Cavallotti, C. Carraro, R. Maboudian, Sens. Actuators B 2007, 125, 353.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot12mt7o%3D&md5=47920200ec9d0ad5506f4994df40dc8eCAS |
[34] D. A. Genov, A. K. Sarychev, V. M. Shalaev, A. Wei, Nano Lett. 2004, 4, 153.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpsFOksbo%3D&md5=41bf5eab8e7c032c2d182aa26d528dccCAS |
[35] T. D. Corrigan, S. Guo, R. J. Phaneuf, H. Szmacinski, J. Fluoresc. 2005, 15, 777.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht12lsbfK&md5=21b1980fb1b36368a856c1c3e57a40f3CAS |
[36] C. Mu, J. P. Zhang, D. S. Xu, Nanotechnology 2010, 21, 015604.
| Crossref | GoogleScholarGoogle Scholar |
[37] B. Yan, A. Thubagere, W. R. Premasiri, L. D. Ziegler, L. D. Negro, B. M. Reinhard, ACS Nano 2009, 3, 1190.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktF2hurw%3D&md5=3eeb6e06fc1e279f2794dd784b8e4d74CAS |
[38] D. E. Motaung, G. F. Malgas, C. J. Arendse, S. E. Mavundla, D. Knoesen, Mater. Chem. Phys. 2009, 116, 279.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvFGksro%3D&md5=286874a5afc0b5c367233c0817733bb3CAS |
[39] X. H. Zu, Z. H. Jian, G. B. Yi, H. L. Huang, B. B. Zhong, H. S. Luo, J. R. Huang, C. Wang, Chin. J. Polym. Sci. 2015, 33, 1470.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtlKltLnF&md5=78fd9dd13f465909bb3283a542258e0dCAS |
[40] X. N. Wang, Y. Y. Wang, M. Cong, H. B. Li, Y. J. Gu, J. R. Lombardi, S. P. Xu, W. Q. Xu, Small 2013, 9, 1895.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVChtbvE&md5=ded18ff0cf68c006487f12f651b34acbCAS |
[41] L. H. Qian, R. Mookherjee, Nano Res. 2011, 4, 1117.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVGnsbbJ&md5=4909bfa38ed8188ffc4f73bb625f1dc2CAS |