Synthesis of Self-Assembled Co3O4 Nanoparticles with Porous Sea Urchin-Like Morphology and their Catalytic and Electrochemical Applications
Saba Jamil A B E , Muhammad Ramzan Saeed Ashraf Janjua C D E and Shanza Rauf Khan AA Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan.
B College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
C Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
D Department of Chemistry, University of Sargodha, Sargodha-40100, Pakistan.
E Corresponding authors. Email: saba_hrb@yahoo.com; janjua@kfupm.edu.sa
Australian Journal of Chemistry 70(8) 908-916 https://doi.org/10.1071/CH16694
Submitted: 6 December 2016 Accepted: 16 March 2017 Published: 5 April 2017
Abstract
Novel self-assembled cobalt oxide nanoparticles with sea urchin-like morphology were synthesized using a solvothermal method. It was observed that the product consists of a tube-like arrangement of nanoparticles arising from a base. The base is formed by the arrangement of nanoparticles in the form of dense aggregates. A series of comparative experiments were performed over different time intervals to investigate the mechanism of formation of this morphology. The electrochemical performance of an electrode prepared based on this product was analysed by cyclic voltammetry, chronopotentiometry, and alternating current impedance. The electrochemical study shows that the prepared electrode possesses high capacitance and offers very low resistance against the flow of electrons. The product was used as a catalyst for the reduction of nitrobenzene in aqueous medium. The value of the apparent rate constant of catalysis was found to be as high as previously reported values.
References
[1] G. Jin, S. Liu, Y. Li, Y. Guo, Z. Ding, Nano 2016, 11, 1650126.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhslWjsbvN&md5=070db77b2377160cde2a9ea1d216a4b0CAS |
[2] W. Zhang, L. Hu, F. Wu, J. Li, Catal. Lett. 2017, 147, 407.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXovVymsg%3D%3D&md5=7004fff183b0a89f7581164780cbaec4CAS |
[3] H. Tada, T. Ishida, A. Takao, S. Ito, S. Mukhopadhyay, T. Akita, ChemPhysChem 2005, 6, 1537.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXps12ntLw%3D&md5=e78883ba2089363c76809364ae208d07CAS |
[4] J. Li, D. Kuang, Y. Feng, F. Zhang, Z. Xu, M. Liu, D. Wang, Biosens. Bioelectron. 2013, 42, 198.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXisVOgt70%3D&md5=c5e2778c2f5790ae41a0ef9543279e25CAS |
[5] J. Y. Kim, N.-J. Choi, H. J. Park, J. Kim, D.-S. Lee, H. Song, J. Phys. Chem. C 2014, 118, 25994.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslKkurbJ&md5=858bb7fdd7d6c5975a137fb390c90070CAS |
[6] I. I. Suni, Trends Analyt. Chem. 2008, 27, 604.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptlKlu74%3D&md5=a1f0f3c65a88a86318f7db06145a568aCAS |
[7] N. Sanpo, C. C. Berndt, C. Wen, J. Wang, Acta Biomater. 2013, 9, 5830.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslChsLk%3D&md5=7a7e7a4e191fa0aedb2182ed48d7a68aCAS |
[8] N. Yan, L. Hu, Y. Li, Y. Wang, H. Zhong, X. Hu, X. Kong, Q. Chen, J. Phys. Chem. C 2012, 116, 7227.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjt12lsbs%3D&md5=cabdbed6629cb9311446887c052767a9CAS |
[9] X. C. Dong, H. Xu, X. W. Wang, Y.-X. Huang, M. B. Chan-Park, H. Zhang, L.-H. Wang, W. Huang, P. Chen, ACS Nano 2012, 6, 3206.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xkt1ehs70%3D&md5=e27694b3dddc3398c874f96fb5c66f6cCAS |
[10] M. D. Stoller, R. S. Ruoff, Energy Environ. Sci. 2010, 3, 1294.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1yrsbnM&md5=0503a4a038ca3ec6e41a9056c6ce6e98CAS |
[11] B. Wang, T. Zhu, H. B. Wu, R. Xu, J. S. Chen, X. W. D. Lou, Nanoscale 2012, 4, 2145.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtFyqsr4%3D&md5=cb20d4fc68a58c5e92b5f5ff2a18fcc4CAS |
[12] Y. Lu, X. Liu, K. Qiu, J. Cheng, W. Wang, H. Yan, C. Tang, J.-K. Kim, Y. Luo, ACS Appl. Mater. Interfaces 2015, 7, 9682.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXntVCgtLc%3D&md5=81372de46e63ded912ac9c9e42e83fbfCAS |
[13] T. Y. Wei, C. H. Chen, H. C. Chien, S. Y. Lu, C. C. Hu, Adv. Mater. 2010, 22, 347.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXos1yjsw%3D%3D&md5=60c509b941b63b429df6ac85e795861cCAS |
[14] W. Wang, S. Guo, I. Lee, K. Ahmed, J. Zhong, Z. Favors, F. Zaera, M. Ozkan, C. A. Ozkan, Sci. Rep. 2014, 4, 4452.
[15] S. Guo, E. Wang, Anal. Chim. Acta 2007, 598, 181.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXps1Gku7g%3D&md5=96e7204fce20c14d4b1a325d2838e4e3CAS |
[16] W. Wei, X. Cui, W. Chen, D. G. Ivey, Chem. Soc. Rev. 2011, 40, 1697.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1Kitrc%3D&md5=009cf54f5c908ef8a4c348c98518eeffCAS |
[17] A. M. Cao, J. S. Hu, H. P. Liang, L. J. Wan, Angew. Chem. Int. Ed. 2005, 44, 4391.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvVehs7Y%3D&md5=e77d226a5ba32bcf004b89fcfa11ecfaCAS |
[18] T. Ahmad, K. V. Ramanujachary, S. E. Lofland, A. K. Ganguli, Solid State Sci. 2006, 8, 425.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjs1ahtLs%3D&md5=1bdcc5b721225e94edcaa4ee01bfce46CAS |
[19] X. Wang, J. Song, L. Gao, J. Jin, H. Zheng, Z. Zhang, Nanotechnology 2005, 16, 37.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitVaks74%3D&md5=a609c6494ad37a749e6eff44c9932bc0CAS |
[20] C. Yuan, X. Zhang, L. Su, B. Gao, L. Shen, J. Mater. Chem. 2009, 19, 5772.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpsValtbY%3D&md5=a7661e214fab22db32f12e63132ed88eCAS |
[21] A. Salimi, R. Hallaj, S. Soltanian, H. Mamkhezri, Anal. Chim. Acta 2007, 594, 24.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmt1Kjtrg%3D&md5=85ff0add382ecdb2d6f4a8301884904cCAS |
[22] M.-J. Deng, F.-L. Huang, I.-W. Sun, W.-T. Tsai, J.-K. Chang, Nanotechnology 2009, 20, 175602.
| Crossref | GoogleScholarGoogle Scholar |
[23] Y. Fan, H. Shao, J. Wang, L. Liu, J. Zhang, C. Cao, Chem. Commun. 2011, 3469.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivVWls7o%3D&md5=4db7c329ef6df417d40b4b4b700932b9CAS |
[24] Z.-Y. Li, P. T. M. Bui, D.-H. Kwak, M. S. Akhtar, O. B. Yang, Ceram. Int. 2016, 42, 1879.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhs1ehs7%2FO&md5=2a35974dfa88def3ed39f75b43d6ef74CAS |
[25] X. Liu, Q. Long, C. Jiang, B. Zhan, C. Li, S. Liu, Q. Zhao, W. Huang, X. Dong, Nanoscale 2013, 5, 6525.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVWht7nF&md5=4956754ec59abeeea9353469f3be7877CAS |
[26] Q. Guan, J. Cheng, B. Wang, W. Ni, G. Gu, X. Li, L. Huang, G. Yang, F. Nie, ACS Appl. Mater. Interfaces 2014, 6, 7626.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXlsl2qs7o%3D&md5=25cff8c0c2991860c06e0e60297a6b12CAS |
[27] F. Zhang, C. Yuan, J. Zhu, J. Wang, X. Zhang, X. W. D. Lou, Adv. Funct. Mater. 2013, 23, 3909.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXksFeisLo%3D&md5=46d0c2918d596bdbce29fabec1bd4596CAS |
[28] G. Wang, L. Zhang, J. Kim, J. Zhang, J. Power Sources 2012, 217, 554.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Wlt7rF&md5=c73ebd2d14570bd3e56fb23b666b26caCAS |
[29] S. Jamil, M. R. S. A. Janjua, T. Ahmad, Solid State Sci. 2014, 36, 73.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlCksrzK&md5=7baff8a0baa8ed59fb22c09f840319b8CAS |
[30] C. Yuan, L. Yang, L. Hou, J. Li, Y. Sun, X. Zhang, L. Shen, X. Lu, S. Xiong, X. W. Lou, Adv. Funct. Mater. 2012, 22, 2560.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvVGmsLc%3D&md5=1b3eb8a0ee014a9ee0d9a11fc96e2d87CAS |
[31] L. Yang, S. Cheng, Y. Ding, X. Zhu, Z. L. Wang, M. Liu, Nano Lett. 2012, 12, 321.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1aqu7rI&md5=384dee6b1c03181985e8b81cc6e60c6bCAS |
[32] N. Spataru, C. Terashima, K. Tokuhiro, I. Sutanto, D. A. Tryk, S.-M. Park, A. Fujishima, J. Electrochem. Soc. 2003, 150, E337.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksFymsrg%3D&md5=499a80874b8914688faccf0a73546d81CAS |
[33] V. Gau, S.-C. Ma, H. Wang, J. Tsukuda, J. Kibler, D. A. Haake, Methods 2005, 37, 73.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFWntrjI&md5=7566f810e8d0ac2d4caf2d5b8e1eeafbCAS |
[34] X. Wang, A. Sumboja, M. Lin, J. Yan, P. S. Lee, Nanoscale 2012, 4, 7266.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsF2kurfM&md5=46202fc1442456ceaabc258b8a465aa7CAS |
[35] A. Inamdar, Y. S. Kim, J. S. Sohn, H. Im, H. Kim, D.-Y. Kim, S. R. Kalubarme, C. J. Park, J. Korean Phys. Soc. 2011, 59, 145.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtV2rtbfM&md5=cd7c4904d7e5d3e1c9ad29ca72801fbdCAS |
[36] A. Sadkowski, J. P. Diard, Electrochim. Acta 2010, 55, 1907.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1Smsbw%3D&md5=a7b069a31705997702292734de7703a6CAS |
[37] L. Ge, X.-y. Jing, J. Wang, S. Jamil, Q. Liu, D.-l. Song, J. Wang, Y. Xie, P.-p. Yang, M.-l. Zhang, Cryst. Growth Des. 2010, 10, 1688.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtlajsb0%3D&md5=4982c541b3aa83066dbb8c41a753bc37CAS |
[38] J. Xiao, S. Yang, RSC Adv. 2011, 1, 588.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlWitrnI&md5=5c2cc7868e19fbf73bf5f0fba096450aCAS |
[39] J. W. Larsen, M. Freund, K. Y. Kim, M. Sidovar, J. L. Stuart, Carbon 2000, 38, 655.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXislKru7g%3D&md5=e83e0d5cfa2f06c8f847dbb7beee7b9eCAS |
[40] D. M. Dotzauer, S. Bhattacharjee, Y. Wen, M. L. Bruening, Langmuir 2009, 25, 1865.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisVWrsw%3D%3D&md5=9c76858a2cec730162f4e43f5fed8c67CAS |
[41] R. V. Jagadeesh, D. Banerjee, P. B. Arockiam, H. Junge, K. Junge, M.-M. Pohl, J. Radnik, A. Brückner, M. Beller, Green Chem. 2015, 17, 898.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFKqsrvJ&md5=64c3fa5cf743967dc04c368954337d2cCAS |
[42] T. R. Mandlimath, B. Gopal, J. Mol. Catal. A: Chem. 2011, 350, 9.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlKgtr3L&md5=1243d487a897dc05dbbe461913f3d23aCAS |
[43] Z. H. Farooqi, S. R. Khan, R. Begum, T. Hussain, N. Batool, Walailak J. Sci. Technol. 2015, 12, 1147.
[44] S. R. Khan, Z. H. Farooqi, A. Ali, R. Begum, F. Kanwal, M. Siddiq, Mater. Chem. Phys. 2016, 171, 318.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XnvV2rsg%3D%3D&md5=e9de26d4c5b169dcff0fc1f2974263f6CAS |
[45] Z. H. Farooqi, Z. Butt, R. Begum, S. R. Khan, A. Sharif, E. Ahmed, Mater. Sci. Pol. 2015, 33, 627.
| Crossref | GoogleScholarGoogle Scholar |
[46] F. A. Westerhaus, R. V. Jagadeesh, G. Wienhöfer, M.-M. Pohl, J. Radnik, A.-E. Surkus, J. Rabeah, K. Junge, H. Junge, M. Nielsen, A. Brückner, M. Beller, Nat. Chem. 2013, 5, 537.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsVynsrg%3D&md5=6f42caec594aa8336b957e83bcd68f09CAS |