Investigation of Selective Microwave Heating Phenomena in the Reactions of 2-Substituted Pyridines*
Péter Bana A and István Greiner B CA Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1521 Budapest, Hungary.
B Gedeon Richter Plc., PO Box 27, H-1475 Budapest, Hungary.
C Corresponding author. Email: i.greiner@richter.hu
Australian Journal of Chemistry 70(7) 776-785 https://doi.org/10.1071/CH16643
Submitted: 13 November 2016 Accepted: 9 January 2017 Published: 8 February 2017
Abstract
Debated selective microwave heating effects were investigated in a rearrangement and a benzylation reaction involving 2-substituted pyridines. An accurate, reproducible comparison technique and simultaneous temperature measurement using both external infrared and internal fibre optic sensors were utilized. The experimental details of the benzylation reaction were thoroughly addressed to resolve the inconsistencies that have been discussed previously in the literature. Hidden inhomogeneities in temperature and concentration were revealed within the reaction mixtures during microwave heating, which could be prevented by the modification of the vessel wall using an inert fluoropolymer liner. Instead of the previously proposed microscopic thermal microwave effect, the enhanced reaction rate could be explained by macroscopic-scale localized heating in the boundary layers close to the vessel surface in the microwave-heated experiment.
References
[1] R. Gedye, F. Smith, K. Westaway, H. Ali, L. Baldisera, L. Laberge, J. Rousell, Tetrahedron Lett. 1986, 27, 279.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XitVKgsLg%3D&md5=0856ae269cc84cf3251a0ffc3cb6dd6dCAS |
[2] R. J. Giguere, T. L. Bray, S. M. Duncan, G. Majetich, Tetrahedron Lett. 1986, 27, 4945.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXktlykt70%3D&md5=5201ccc94906314072b5c21d409adc85CAS |
[3] Microwave-Assisted Organic Synthesis: One Hundred Reaction Procedures (Ed. D. Bogdal) 2005 (Elsevier: Amsterdam).
[4] Microwave-Assisted Organic Synthesis (Eds J. P. Tierney, P. Lidström) 2005 (Blackwell Publishing Ltd: Oxford).
[5] C. O. Kappe, D. Dallinger, S. S. Murphree, Practical Microwave Synthesis for Organic Chemists 2009 (Wiley-VCH: Weinheim).
[6] Microwave Heating as a Tool for Sustainable Chemistry (Ed. N. E. Leadbeater) 2010 (CRC Press: Boca Raton, FL).
[7] Microwaves in Organic Synthesis (3rd edn) (Eds A. de la Hoz, A. Loupy) 2012 (Wiley-VCH: Weinheim).
[8] C. O. Kappe, A. Stadler, D. Dallinger, Microwaves in Organic and Medicinal Chemistry (2nd edn) 2012 (Wiley-VCH: Weinheim).
[9] D. M. P. Mingos, D. R. Baghurst, Chem. Soc. Rev. 1991, 20, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXktVOksrg%3D&md5=1bc5665ba8e25247bd31ea7f9fba8a30CAS |
[10] S. Caddick, Tetrahedron 1995, 51, 10403.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXot1Wquro%3D&md5=310033f25fd1935caa035f2243ea08a0CAS |
[11] C. R. Strauss, R. W. Trainor, Aust. J. Chem. 1995, 48, 1665.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXovFOrs7k%3D&md5=499990b9a4a806110d9f46bdea57af03CAS |
[12] S. A. Galema, Chem. Soc. Rev. 1997, 26, 233.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlt1Wmurc%3D&md5=6288a2e6b31988785b18d33b552fa206CAS |
[13] F. Langa, P. de la Cruz, A. de la Hoz, A. Díaz-Ortiz, E. Díez-Barra, Contemp. Org. Synth. 1997, 4, 373.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXntVKgt7o%3D&md5=51b660a33b76778b5621c1cfbfb4b1e7CAS |
[14] A. Stadler, C. O. Kappe, Eur. J. Org. Chem. 2001, 919.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhs1OhtbY%3D&md5=bd09861c2663481a41230e3538759e96CAS |
[15] P. Lidström, J. Tierney, B. Wathey, J. Westman, Tetrahedron 2001, 57, 9225.
| Crossref | GoogleScholarGoogle Scholar |
[16] L. Perreux, A. Loupy, Tetrahedron 2001, 57, 9199.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnvFWlsrk%3D&md5=b1f4cefe8aa39e2a99cf0005a4bef884CAS |
[17] M. Larhed, C. Moberg, A. Hallberg, Acc. Chem. Res. 2002, 35, 717.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkslehsLo%3D&md5=56285129d79ef6906257df0639fad580CAS |
[18] C. O. Kappe, Angew. Chem. Int. Ed. Engl. 2004, 43, 6250.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFWrtL7O&md5=b74ea9566b094ae3b5ba613f60ef8e63CAS |
[19] A. de la Hoz, A. Díaz-Ortiz, A. Moreno, Chem. Soc. Rev. 2005, 34, 164.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvFCrtg%3D%3D&md5=b2fcfcd9cefdb23023454bb869b96bb6CAS |
[20] N. E. Leadbeater, Chem. Commun. 2005, 2881.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltVygurg%3D&md5=6b77934238e23f0c3d4783b017664844CAS |
[21] D. Dallinger, C. O. Kappe, Chem. Rev. 2007, 107, 2563.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksVKjtLs%3D&md5=d81cc74fa4328a148b5ed7f1a7dd4f5eCAS |
[22] C. O. Kappe, Chem. Soc. Rev. 2008, 37, 1127.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtlSit74%3D&md5=9fc3902a50bcc3531beeb56bcc17e45cCAS |
[23] V. Polshettiwar, R. S. Varma, Acc. Chem. Res. 2008, 41, 629.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksl2gur4%3D&md5=f13988ce9e62af2d196181494d9f88a7CAS |
[24] C. O. Kappe, D. Dallinger, Mol. Divers. 2009, 13, 71.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltV2hsbg%3D&md5=3d02fedce6971070a8fb4c3aaebd5fb6CAS |
[25] S. Caddick, R. Fitzmaurice, Tetrahedron 2009, 65, 3325.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsl2htro%3D&md5=b569aa19dd382d132ce94ca23b15414cCAS |
[26] K. Kranjc, M. Kocevar, Curr. Org. Chem. 2010, 14, 1050.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsVKlsro%3D&md5=b11d48093b41ff2a23e99cf944dba560CAS |
[27] K. Kranjc, M. Kocevar, Curr. Org. Chem. 2013, 17, 448.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXotFahuro%3D&md5=13f4beb495b579e7d3c392318429b4ceCAS |
[28] K. Kranjc, M. Kocevar, Curr. Org. Chem. 2013, 17, 457.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXotFahurs%3D&md5=1cdc5fe1497d9a9729c5dbf1d5120ee6CAS |
[29] M. B. Gawande, S. N. Shelke, R. Zboril, R. S. Varma, Acc. Chem. Res. 2014, 47, 1338.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXkslaksr4%3D&md5=607f7deead99eb9d087f70c246ce42d2CAS |
[30] See pp. 9–39 in: C. O. Kappe, A. Stadler, D. Dallinger, Microwaves in Organic and Medicinal Chemistry (2nd edn) 2012 (Wiley-VCH: Weinheim).
[31] P. Bana, I. Greiner, in Milestones in Microwave Chemistry (Ed. G. Keglevich) 2016, pp. 77–110 (Springer International Publishing: Cham, Switzerland).
[32] C. O. Kappe, Chem. Soc. Rev. 2013, 42, 4977.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXot1ersbY%3D&md5=3da4fd1028c567ac5a230d07e1082c2fCAS |
[33] S. Hostyn, B. U. W. Maes, G. Van Baelen, A. Gulevskaya, C. Meyers, K. Smits, Tetrahedron 2006, 62, 4676.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjslCgsbc%3D&md5=0d0b02893801a081b55850b345b4ef5fCAS |
[34] M. Hosseini, N. Stiasni, V. Barbieri, C. O. Kappe, J. Org. Chem. 2007, 72, 1417.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnt1KltQ%3D%3D&md5=f259da0bc00d73a61cd11c47a57e6e36CAS |
[35] M. A. Herrero, J. M. Kremsner, C. O. Kappe, J. Org. Chem. 2008, 73, 36.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtl2itLjO&md5=0cbc53df4f2659df7b26e91da1d54813CAS |
[36] B. Bacsa, K. Horváti, S. Bősze, F. Andreae, C. O. Kappe, J. Org. Chem. 2008, 73, 7532.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVChs7jF&md5=b5e5eb81279d05a0f8649c7d33818d22CAS |
[37] T. Razzaq, J. M. Kremsner, C. O. Kappe, J. Org. Chem. 2008, 73, 6321.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotlOmtrw%3D&md5=c89f0803de6c7207d76ad1c1e599a629CAS |
[38] M. Irfan, M. Fuchs, T. N. Glasnov, C. O. Kappe, Chem. – Eur. J. 2009, 15, 11608.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlansLrO&md5=5a652c1db49d2e287039616bb47d66cfCAS |
[39] T. N. Glasnov, S. Findenig, C. O. Kappe, Chem. – Eur. J. 2009, 15, 1001.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVKgtb0%3D&md5=2b9a73b20455f9f41faa03a975976a00CAS |
[40] R. O. M. A. de Souza, O. A. C. Antunes, W. Kroutil, C. O. Kappe, J. Org. Chem. 2009, 74, 6157.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosVGjs7k%3D&md5=40017d4fc255624f62cbd3cd597d7a40CAS |
[41] D. Dallinger, M. Irfan, A. Suljanovic, C. O. Kappe, J. Org. Chem. 2010, 75, 5278.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovVChsbY%3D&md5=0c52349ed370a8faa0a3c7b8b6c3d52bCAS |
[42] D. Obermayer, C. O. Kappe, Org. Biomol. Chem. 2010, 8, 114.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFekurfK&md5=0eb6c5603bb9b5a5fe01b429bac22571CAS |
[43] M. H. C. L. Dressen, J. E. Stumpel, B. H. P. van de Kruijs, J. Meuldijk, J. A. J. M. Vekemans, L. A. Hulshof, Green Chem. 2009, 11, 60.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvF2ntw%3D%3D&md5=a4ce738b532cbca4af2ec7aa2d414b1aCAS |
[44] N. E. Leadbeater, L. M. Stencel, E. C. Wood, Org. Biomol. Chem. 2007, 5, 1052.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjt1Squ7s%3D&md5=738ea64e49f577e63249aedbb933a725CAS |
[45] J. Ramier, E. Renard, D. Grande, Macromol. Chem. Phys. 2012, 213, 784.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtFOltL8%3D&md5=bd7ec7f94f129b532417d6d119c6eb03CAS |
[46] J. Rigolini, B. Grassl, S. Reynaud, L. Billon, J. Polym. Sci. Part A: Polym. Chem. 2010, 48, 5775.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVagu7jK&md5=a57b9b6b6f0c2c27992b0a8d3f937ed0CAS |
[47] D. Obermayer, B. Gutmann, C. O. Kappe, Angew. Chem. Int. Ed. Engl. 2009, 48, 8321.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht12htb%2FE&md5=1946d4c4cd88177338f8cfc168aba90dCAS |
[48] B. Gutmann, D. Obermayer, B. Reichart, B. Prekodravac, M. Irfan, J. M. Kremsner, C. O. Kappe, Chem. – Eur. J. 2010, 16, 12182.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12ltLrE&md5=359711aa2a3529395129faa7b6c879f1CAS |
[49] B. Ashley, D. D. Lovingood, Y.-C. Chiu, H. Gao, J. Owens, G. F. Strouse, Phys. Chem. Chem. Phys. 2015, 17, 27317.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtlSlur3J&md5=515be6de3bfb28e347f8d9152842de46CAS |
[50] C. O. Kappe, Acc. Chem. Res. 2013, 46, 1579.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjsFejtb8%3D&md5=a677c9f38b096dff062b86bf6f84501eCAS |
[51] D. Obermayer, M. Damm, C. O. Kappe, Org. Biomol. Chem. 2013, 11, 4949.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtV2rsrzO&md5=17ea5f0abdd83fd578ba1ead7d056231CAS |
[52] K. A. Yeboah, J. D. Boyd, K. A. Kyeremateng, C. C. Shepherd, I. M. Ingersoll, D. L. Jackson, A. W. Holland, React. Kinet. Mech. Catal. 2014, 112, 295.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXptFyktL4%3D&md5=64743785ed830b979fb06e7aa143c367CAS |
[53] D. Stuerga, P. Gaillard, Tetrahedron 1996, 52, 5505.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XitlyrsLo%3D&md5=e8e5a45916937f9dc4d0621f5df57267CAS |
[54] G. Keglevich, I. Greiner, Z. Mucsi, Curr. Org. Chem. 2015, 19, 1436.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFOmurzP&md5=cc25c130dab6b79b361ef795f6782d73CAS |
[55] M. R. Rosana, Y. Tao, A. E. Stiegman, G. B. Dudley, Chem. Sci. 2012, 3, 1240.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjt1Ontb0%3D&md5=3118cc725de6960ef8ffb4a5ac5db054CAS |
[56] M. R. Rosana, J. Hunt, A. Ferrari, T. A. Southworth, Y. Tao, A. E. Stiegman, G. B. Dudley, J. Org. Chem. 2014, 79, 7437.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFyqsrfL&md5=1437114f0fed0267ca7c155432344887CAS |
[57] P.-K. Chen, M. R. Rosana, G. B. Dudley, A. E. Stiegman, J. Org. Chem. 2014, 79, 7425.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFyqsL%2FP&md5=b521bf4647c73b01263645393d672022CAS |
[58] G. B. Dudley, R. Richert, A. E. Stiegman, Chem. Sci. 2015, 6, 2144.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVWgs7g%3D&md5=82aa88babcdac09134664603dfa59d13CAS |
[59] C. O. Kappe, B. Pieber, D. Dallinger, Angew. Chem. Int. Ed. Engl. 2013, 52, 1088.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVSlsbzP&md5=3782843104e27473bafbde42ecdf0258CAS |
[60] G. B. Dudley, A. E. Stiegman, M. R. Rosana, Angew. Chem. Int. Ed. Engl. 2013, 52, 7918.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVGrt7zK&md5=2f79cea39c05ceb8acf60a843e4d3927CAS |
[61] C. O. Kappe, Angew. Chem. Int. Ed. Engl. 2013, 52, 7924.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVGktbfI&md5=a0a6b0d13330c7715d5bedd21883af08CAS |
[62] D. R. Baghurst, D. M. P. Mingos, J. Chem. Soc., Chem. Commun. 1992, 674.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XktVOnsbc%3D&md5=71218eed0ad877a962a847ac97547455CAS |
[63] F. Chemat, E. Esveld, Chem. Eng. Technol. 2001, 24, 735.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvFCqt74%3D&md5=09a3a3014647a00c686e83a71c5e04fbCAS |
[64] A. Ferrari, J. Hunt, A. Stiegman, G. Dudley, Molecules 2015, 20, 21672.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhvVWrsLo%3D&md5=efb01a6a29e498cc00435241cb0db382CAS |
[65] S. K. Ritter, Chem. Eng. News 2014, 92, 26.
| Crossref | GoogleScholarGoogle Scholar |
[66] P. Bana, I. Greiner, Aust. J. Chem. 2016, 69, 865.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xht1KktLnN&md5=010b1005a862d39599474a30785a4ca3CAS |
[67] E. L. Lanni, M. A. Bosscher, B. D. Ooms, C. A. Shandro, B. A. Ellsworth, C. E. Anderson, J. Org. Chem. 2008, 73, 6425.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXot1ersrw%3D&md5=eafae5b52a4191459f6a30d7aaec9259CAS |
[68] S. Z. Tasker, M. A. Bosscher, C. A. Shandro, E. L. Lanni, K. A. Ryu, G. S. Snapper, J. M. Utter, B. A. Ellsworth, C. E. Anderson, J. Org. Chem. 2012, 77, 8220.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1yhsLjI&md5=0f55c138d5fd0237a2b54754bd7ce452CAS |
[69] B. L. Hayes, M. J. Collins, U.S. Patent 6,744,024 2004.
[70] N. E. Leadbeater, S. J. Pillsbury, E. Shanahan, V. A. Williams, Tetrahedron 2005, 61, 3565.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXit1yku7Y%3D&md5=db84ee795b8458d4b63097cc5d209eb2CAS |
[71] K. W. C. Poon, G. B. Dudley, J. Org. Chem. 2006, 71, 3923.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjt1yiu7c%3D&md5=8d3a4b1053e315e494feae645f280316CAS |
[72] P. A. Albiniak, G. B. Dudley, Tetrahedron Lett. 2007, 48, 8097.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Sms7nN&md5=fbf3df681566181fc14e39f414d5554dCAS |
[73] J. N. Cooper, R. E. Powell, J. Am. Chem. Soc. 1963, 85, 1590.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXktVygu70%3D&md5=7b4a12d2e38324ddd2f3d015eb3b8cecCAS |
[74] H. Nishida, N. Takada, M. Yoshimura, T. Sonoda, H. Kobayashi, Bull. Chem. Soc. Jpn. 1984, 57, 2600.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXlslymtb4%3D&md5=0d053742a101df3c0e64a2d88bc6bc14CAS |
[75] K. Fujiki, J. Ichikawa, H. Kobayashi, A. Sonoda, T. Sonoda, J. Fluor. Chem. 2000, 102, 293.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXitVSksr4%3D&md5=ebc4afa61f35523f9e9f4fba83a80d6dCAS |
[76] M. Brookhart, B. Grant, A. F. Volpe, Organometallics 1992, 11, 3920.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhtVajs7Y%3D&md5=0f99a68a378f9e69dcdcb8d81ae494a4CAS |
[77] R. Taube, S. Wache, J. Organomet. Chem. 1992, 428, 431.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XkslSjs7g%3D&md5=c146668c267f6e5ffb8c4e08c2ad7ecfCAS |
[78] P. Brothers, G. Chapman, K. Farnsworth, R. Morgan, in Handbook of Fluoropolymer Science and Technology (Eds D. W. Smith, S. T. Iacono, S. S. Iyer) 2014, pp. 599–621 (John Wiley & Sons, Inc.: Hoboken, NJ).
[79] S. Lee, J.-S. Park, T. R. Lee, Langmuir 2008, 24, 4817.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkt1eht7c%3D&md5=6bca54c45176999ee690e946fb52a15aCAS |
[80] K. Poon, P. Albiniak, G. Dudley, Org. Synth. 2007, 84, 295.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFygurzO&md5=55b81490d57800c0de206859aa42bdb8CAS |
[81] C. L. Ricardo, X. Mo, J. A. McCubbin, D. G. Hall, Chem. – Eur. J. 2015, 21, 4218.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjsFGgsrw%3D&md5=e9366dc5637ef2880a8448d2c8e82765CAS |
[82] Y. Wu, J. Gagnier, G. B. Dudley, A. E. Stiegman, Chem. Commun. 2016, 11281.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsVWlurzI&md5=174afc1690cb2644422e13f639171646CAS |
[83] X. Li, J. Xu, Tetrahedron 2016, 72, 5515.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xht1Gjur3M&md5=5f4ab9c9a610bffd5aa25cd82aedf2b2CAS |
[84] B. L. Hayes, Microwave Synthesis: Chemistry at the Speed of Light 2002 (CEM Publishing: Matthews, NC).