Luminescent Functionalised Supramolecular Coordination Polymers Based on an Aromatic Carboxylic Acid Ligand for Sensing Hg2+ Ions
Xiaojun Sun A C , Ping Yang A , Guangfeng Hou B , Jinzhi Wei A , Xueliang Wang A , Doudou Yang A , Xin Zhang A , Hong Dong A and Fengming Zhang A CA Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, China.
B Engineering Research Center of Pesticide of Heilongjiang University, Heilongjiang University, Harbin 150080, China.
C Corresponding authors. Email: sunxiaojun@hrbust.edu.cn; zhangfm80@163.com
Australian Journal of Chemistry 70(7) 786-791 https://doi.org/10.1071/CH16600
Submitted: 24 October 2016 Accepted: 9 January 2017 Published: 13 February 2017
Abstract
Two luminescent functionalised supramolecular coordination polymers, namely, [Zn(TPDC-2CH3)(H2O)2]·H2O (1) and [Cd(TPDC-2CH3)(H2O)4]·H2O (2), were successfully synthesised by the reaction of 2′,5′-dimethyl-[1,1′:4′,1″-terphenyl]-4,4″-dicarboxylic acid (H2TPDC-2CH3) with Zn2+ and Cd2+ ions, respectively. X-Ray crystallographic analysis reveals that both compounds 1 and 2 exhibit fascinating 3D supramolecular networks, in which metal ions are linked by ligands to form a 1D chain which further extends to a 3D structure through the interaction of hydrogen bonding. The use of 1 and 2 as luminescent sensors for the optical detection of metal ions: Na+, K+, Hg2+, Ag+, Ca2+, Co2+, Ni2+, Mn2+, Cu2+, Zn2+, Cd2+, Pb2+, Mg2+, Al3+, Fe3+, Fe2+, In3+, Bi3+, and Cr3+ was carried out in aqueous solution, and the results indicated that compound 1 could effectively detect Hg2+ ions among various cations at room temperature, with a detection limit of 3.6 × 10−15 M.
References
[1] X. Tang, H. Liu, B. Zou, D. Tian, H. Huang, Analyst 2012, 137, 309.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1SisLnP&md5=b09d70adcefaf04aa74b6f16328b3c66CAS |
[2] J. S. Lee, C. A. Mirkin, Anal. Chem. 2008, 80, 6805.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptVyrsL0%3D&md5=9f03e9f74f54dbcd50b2464f1bbba8d9CAS |
[3] D. Li, A. Wieckowska, I. Willner, Angew. Chem. 2008, 47, 3927.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsVeqs7s%3D&md5=36769fb1d5efce3e8660c2042fda31c5CAS |
[4] M. Ghaedi, M. Reza Fathi, A. Shokrollahi, F. Shajarat, Anal. Lett. 2006, 39, 1171.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsFamtb4%3D&md5=e7e682a92aca01072a107c27d34a6bb9CAS |
[5] K. Huang, K. Xu, X. Hou, Y. Jia, C. Zheng, L. Yang, J. Anal. At. Spectrom. 2013, 28, 510.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjvVaqur4%3D&md5=df6c9ccda3f79d563a39e233d1d085e3CAS |
[6] D. Kong, N. Wang, X. Guo, H. Shen, Analyst 2010, 135, 545.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXit1Gjsr8%3D&md5=2f9610018c8c03fb8c19bb7fe548eba9CAS |
[7] C. X. Tang, Y. Zhao, X. W. He, X. B. Yin, Chem. Commun. 2010, 46, 9022.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVGrt77E&md5=aadbd3a291d25503b7bc29b634430361CAS |
[8] X. Zhu, L. Chen, Z. Lin, B. Qiu, G. Chen, Chem. Commun. 2010, 46, 3149.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlt1Crsr8%3D&md5=207b6f51e57d1824d6096c314eab95bbCAS |
[9] A. Ghorai, J. Mondal, S. Chowdhury, G. K. Patra, Dalton Trans. 2016, 45, 11540.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtVGnsLrF&md5=6563a0d75f128cfa1f82b97bfda8a85fCAS |
[10] E. S. Childress, C. A. Roberts, D. Y. Sherwood, C. L. Leguyader, E. J. Harbron, Anal. Chem. 2012, 84, 1235.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Oitbo%3D&md5=252670466d02e228926c2452dc8a32d1CAS |
[11] L. J. Ma, Y. Li, L. Li, J. Sun, C. Tian, Y. Wu, Chem. Commun. 2008, 47, 6345.
| Crossref | GoogleScholarGoogle Scholar |
[12] F. Y. Yan, Y. Zou, M. Wang, X. L. Mu, N. Yang, L. Chen, Sens. Actuators B 2014, 192, 488.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXptVCj&md5=f3d9884d833d34ae7c964ca3f9b1d6b7CAS |
[13] X. H. Zhou, L. Li, H. H. Li, A. Li, T. Yang, W. Huang, Dalton Trans. 2013, 42, 12403.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1WltLrP&md5=971ffc31a075d858fedf5e0223c6a4f2CAS |
[14] M. M. Liu, G. Li, Z. H. Cheng, New J. Chem. 2015, 39, 8484.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtlKks77J&md5=b20c5a2675ae0483cbe053d383fd3b21CAS |
[15] Z. Xu, G. Q. Li, Y. Y. Ren, H. Huang, X. P. Wen, Q. Xu, X. T. Fan, Z. Huang, J. H. Huang, L. Xu, Dalton Trans. 2016, 45, 12087.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtVyhsLjI&md5=bef5cca77a13e9aaf11ebbb9ecda6732CAS |
[16] C. Kar, S. Goswami, A. Ramesh, G. Das, Dalton Trans. 2015, 44, 4123.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlsFOrug%3D%3D&md5=fd519b263b85e1d32d35121580ef9158CAS |
[17] A. Mishra, J. H. Jo, H. Kim, S. Woo, K. W. Chi, ChemPlusChem 2014, 79, 925.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFyru7jP&md5=3ebbb4736357d921b6c2d886a71f9c2fCAS |
[18] S. N. Zhao, L. L. Wu, J. Feng, S. Y. Song, H. J. Zhang, Inorg. Chem. Front. 2016, 3, 376.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitVynurvK&md5=c2f68a31ec0fdfb50be4386f360b15b7CAS |
[19] P. Wu, Y. Liu, Y. Liu, J. Wang, Y. Li, W. Liu, J. Wang, Inorg. Chem. 2015, 54, 11046.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvFGjtbnO&md5=e8c9408e3e19deca112f174dcb8bfc07CAS |
[20] H. L. Jiang, D. Feng, T. F. Liu, J. R. Li, H. C. Zhou, J. Am. Chem. Soc. 2012, 134, 14690.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Wqu7nN&md5=d624fe8758bc87090367d03261aee449CAS |
[21] G. M. Sheldrick, Acta Crystallogr. Sect. A 2008, A64, 112.
| Crossref | GoogleScholarGoogle Scholar |
[22] R. J. Gildea, L. J. Bourhis, O. V. Dolomanov, R. W. Grosse-Kunstleve, H. Puschmann, P. D. Adams, J. A. K. Howard, J. Appl. Cryst. 2011, 44, 1259.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFSisrvL&md5=4f8385f7650aa16455943815e5bb8758CAS |
[23] L. Zhang, Y. Y. Qin, Z. J. Li, Q. P. Lin, J. K. Cheng, J. Zhang, Y. G. Yao, Inorg. Chem. 2008, 47, 8286.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpvFSmsbY%3D&md5=64575d4c447daf0d25497ffa26b8ab63CAS |
[24] J. Sahu, M. Ahmad, P. K. Bharadwaj, Cryst. Growth Des. 2013, 13, 2618.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlvVyrsbo%3D&md5=fd102d813e7ee3d6f8d171a7973e9114CAS |
[25] B. Q. Ma, H. L. Sun, G. Song, Angew. Chem. Int. Ed. 2004, 43, 1374.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivFahtr0%3D&md5=18fecc1563f95c7c0d9ed5c49eadb2a8CAS |
[26] H. Y. Liu, J. F. Ma, Y. Y. Liu, J. Yang, CrystEngComm 2013, 15, 2699.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjslKgsb8%3D&md5=00fee07ca2f07a02ccf8ac142960d322CAS |
[27] Z. W. Wang, M. Yu, T. Li, X. R. Meng, J. Coord. Chem. 2013, 66, 4163.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslCqsrjE&md5=b8626563e06d3ab3c75a2f57392cd332CAS |
[28] J. M. Zhou, W. Shi, H. M. Li, H. Li, P. Cheng, J. Phys. Chem. C 2014, 118, 416.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFSqs77E&md5=8d9b4652552605203a3ecf0972d6334bCAS |
[29] S. S. Zhao, J. Yang, Y. Y. Liu, J. F. Ma, Inorg. Chem. 2016, 55, 2261.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XislCns74%3D&md5=551023aebe3319278b795fc6767b445eCAS |
[30] Y. Wang, J. Yang, Y. Y. Liu, J. F. Ma, Chem. – Eur. J. 2013, 19, 14591.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVCntLfI&md5=37a7576e2386386ea9878354a2fd44b1CAS |
[31] Z. Hu, S. Pramanik, K. Tan, C. Zheng, W. Liu, X. Zhang, Y. J. Chabal, J. Li, Cryst. Growth Des. 2013, 13, 4204.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht12htLnO&md5=8f0669ba1e0dce1ef97dd1547457deaaCAS |
[32] Z. Hu, B. J. Deibert, J. Li, Chem. Soc. Rev. 2014, 43, 5815.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1Slu7nL&md5=3b5539c74cb32989cd3eac126b6a469dCAS |
[33] H. Xu, M. Fang, C. S. Cao, W. Z. Qiao, B. Zhao, Inorg. Chem. 2016, 55, 4790.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XntVShsLg%3D&md5=350069d7e8003b93643d062a46466533CAS |
[34] C. Q. Jiang, T. Wang, Bioorg. Med. Chem. 2004, 12, 2043.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjtVKqtbg%3D&md5=51509f714a2bf2487a0594cacaa44ed1CAS |
[35] Y. Zhou, C. Zhong, Y. He, L. Xiao, Y. Liu, H. Zhang, J. Inorg. Organomet. Polym. Mater. 2009, 19, 328.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovFWks7g%3D&md5=bc316ba4c8c46909f1ac6115e17a2622CAS |
[36] D. X. Zeng, Y. Chen, J. Photochem. Photobiol. Chem. 2007, 186, 121.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Gisbs%3D&md5=bea2b3a6c45a65b9ee0ad131a8290ceaCAS |
[37] Z. K. Wu, Y. F. Zhang, J. S. Ma, G. Q. Yang, Inorg. Chem. 2006, 45, 3140.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xit1OkurY%3D&md5=ea659618ef1b3fdb96aa930b824bf6a8CAS |