Endocyclic and Endo–Exocyclic Silver(i) Complexes of Thiaoxaaza Macrocycles: Crystallographic and NMR Studies
Yunji Kang A , Hyeong-Hwan Lee A , Huiyeong Ju A , Eunji Lee A , Seulgi Kim A , Joon-Hwa Lee A , In-Hyeok Park A B and Shim Sung Lee A BA Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, South Korea.
B Corresponding authors. Email: pihghost@nate.com; sslee@gnu.ac.kr
Australian Journal of Chemistry 70(5) 456-460 https://doi.org/10.1071/CH16467
Submitted: 11 August 2016 Accepted: 19 August 2016 Published: 8 September 2016
Abstract
A comparative investigation of the coordination behaviour of a 19-membered NO2S2-macrocycle (L1) and a 20-membered NO2S3-macrocycle (L2) is reported. On silver(i) complexation, L1 yields a discrete endocyclic mononuclear complex, whereas L2 affords a one-dimensional coordination polymer in which the endo-coordinated macrocyclic complex units are linked by silver(i) ions outside the cavity via endo–exo-coordination. The larger ring cavity along with the flexible nature of L2 may induce the weaker endocyclic complexation and contribute to exocyclic coordination as well. In NMR titration studies for the corresponding complex system, however, no evidence of exocyclic coordination was observed. Instead, L1 and L2 form a stable endocyclic 1 : 1 silver(i) nitrate complex, with a higher affinity for the former ligand.
References
[1] L. F. Lindoy, The Chemistry of Macrocyclic Complexes 1989 (Cambridge University Press: Cambridge).[2] J.-M. Lehn, Supramolecular Chemistry: Concept and Perspectives 1995 (Wiley VCH: Weinheim).
[3] R. M. Izatt, K. Pawlak, J. S. Bradshaw, R. L. Bruening, Chem. Rev. 1995, 95, 2529.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXoslGiurY%3D&md5=249c6ebed8f85d123ebc729ce77ae00dCAS |
[4] R. M. Izatt, Chem. Rev. 1974, 74, 351.
| Crossref | GoogleScholarGoogle Scholar |
[5] M. W. Glenny, M. Lacombe, J. B. Love, A. J. Blake, L. F. Lindoy, R. C. Luckay, K. Gloe, B. Antonioli, C. Wilsona, M. Schröder, New J. Chem. 2006, 30, 1755.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhs1SjtQ%3D%3D&md5=74fcb33247889ef5c9851eb88943540bCAS |
[6] S. Kim, L. F. Lindoy, S. S. Lee, Coord. Chem. Rev. 2014, 280, 176.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFShs7bM&md5=be1b03c3f1c5a86b9cddff5640cb2683CAS |
[7] E. Lee, S. Y. Lee, L. F. Lindoy, S. S. Lee, Coord. Chem. Rev. 2013, 257, 3125.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFWmsbnE&md5=3f77c52988a54a0b05eab3f7d92e48c7CAS |
[8] S. Park, S. Y. Lee, K.-M. Park, S. S. Lee, Acc. Chem. Res. 2012, 45, 391.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Cqt73N&md5=cbab20dbfd47344ec9108c6829f036b2CAS | 21967328PubMed |
[9] I.-H. Park, H. J. Kim, H. Ju, E. Lee, S. Kim, S. S. Lee, CrystEngComm 2016, 18, 5253.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XptVCrurk%3D&md5=c9520c1cf8a4686e6c6e67aa7c362b5cCAS |
[10] I.-H. Park, H. J. Kim, S. S. Lee, CrystEngComm 2012, 14, 4589.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovVynsrk%3D&md5=9b914325d52a9ddc00422bd2b33264a3CAS |
[11] E. Lee, S. S. Lee, Inorg. Chem. 2011, 50, 5803.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtlylsrc%3D&md5=dc56b23abf854f99d5bfc3c7b03b8198CAS | 21604706PubMed |
[12] H. J. Kim, S. S. Lee, Inorg. Chem. 2008, 47, 10807.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlSqtb%2FF&md5=f5f026372fa8e4ff8976a52a96ba3b9eCAS | 18959379PubMed |
[13] S. J. Lee, J. H. Jung, J. Seo, I. Yoon, K.-M. Park, L. F. Lindoy, S. S. Lee, Org. Lett. 2006, 8, 1641.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xitl2isbw%3D&md5=5cb5bd5e539f60a6e9c0f9218980c928CAS | 16597130PubMed |
[14] S. Park, S. Y. Lee, M. Jo, J. Y. Lee, S. S. Lee, CrystEngComm 2009, 11, 43.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVCktg%3D%3D&md5=3557a5844ef4896326120c3cc173f63aCAS |
[15] M. Jo, J. Seo, M. L. Seo, K. S. Choi, S. K. Cha, L. F. Lindoy, S. S. Lee, Inorg. Chem. 2009, 48, 8186.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovFajtLc%3D&md5=2da69c27ebe506aa0675ebaca6b28355CAS | 19715370PubMed |
[16] S. J. Lee, J.-E. Lee, J. Seo, I. Y. Jeong, S. S. Lee, J. H. Jung, Adv. Funct. Mater. 2007, 17, 3441.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVCnurzI&md5=ec52af2afa94bb86427191ac3ae0c006CAS |
[17] H. Lee, S. S. Lee, Org. Lett. 2009, 11, 1393.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisVKrs7k%3D&md5=ebdf7b743b9881c99fb21016afa6d326CAS | 19236035PubMed |
[18] H. Ju, D. J. Chang, S. Kim, H. Ryu, E. Lee, I.-H. Park, J. H. Jung, M. Ikeda, Y. Habata, S. S. Lee, Inorg. Chem. 2016, 55, 7448.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtFamu77F&md5=74920431ec4b5c51a06537635d06a09dCAS | 27391394PubMed |
[19] S. Kim, A. D. Siewe, E. Lee, H. Ju, I.-H. Park, K.-M. Park, M. Ikeda, Y. Habata, S. S. Lee, Inorg. Chem. 2016, 55, 2018.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XisFymsr0%3D&md5=9b03f7efdc0a3e1282054dadd9083d34CAS | 26885700PubMed |
[20] Y. Kang, I.-H. Park, M. Ikeda, Y. Habata, S. S. Lee, Dalton Trans. 2016, 4528.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvFemurzL&md5=e7bd44d355e71db77eebf96a7becb80cCAS | 26674476PubMed |
[21] H.-H. Lee, E. Lee, H. Ju, S. Kim, I.-H. Park, S. S. Lee, Inorg. Chem. 2016, 55, 2634.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XivVWksb0%3D&md5=2d85fe16474367f6e988e4b7f380d7a8CAS | 26900712PubMed |
[22] H.-H. Lee, I.-H. Park, S. S. Lee, Inorg. Chem. 2014, 53, 4763.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtlSls70%3D&md5=4f3a656ad5d6217d2f22b86a680fea67CAS | 24738989PubMed |
[23] P. Antal, B. Drahoš, R. Herchel, Z. Trávníček, Inorg. Chem. 2016, 55, 5957.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XovVehsrw%3D&md5=cac7f95be1831ee26badc7e8ff760455CAS | 27245288PubMed |
[24] C. Yang, W.-D. Wu, L. Zhao, M.-X. Wang, Organometallics 2015, 34, 5167.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhs12isbzI&md5=b629e23f1d7ef3a5e5d72efbe673885eCAS |
[25] B. Drahoš, R. Herchel, Z. Trávníček, Inorg. Chem. 2015, 54, 3352.
| Crossref | GoogleScholarGoogle Scholar | 25761063PubMed |
[26] D. Zhang, H. Wang, Y. Chen, Z.-H. Ni, L. Tian, J. Jiang, Inorg. Chem. 2009, 48, 5488.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvFWnt7w%3D&md5=9bd56e2fd01d1f8cb1a8b4d03495e721CAS | 19441825PubMed |
[27] C. J. Baylies, L. P. Harding, J. C. Jeffery, T. Riis-Johannessen, C. R. Rice, Angew. Chem. Int. Ed. 2004, 43, 4515.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsFyls7w%3D&md5=b0df659bfe2c2a17305ebf9d0656a296CAS |
[28] O.-S. Jung, Y.-A. Lee, Y. J. Kim, J. Hong, Cryst. Growth Des. 2002, 2, 497.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xmsl2qtL0%3D&md5=63bcc0b6534568c237f11885fcf5bd3bCAS |
[29] M. W. Glenny, A. J. Blake, C. Wilson, M. Schröder, Dalton Trans. 2003, 1941.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjslWgu7k%3D&md5=91a6328e2dea638ad244365206b01b26CAS |
[30] I. Yoon, J. Seo, J.-E. Lee, M. R. Song, S. Y. Lee, K. S. Choi, O.-S. Jung, K.-M. Park, S. S. Lee, Dalton Trans. 2005, 2352.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlslOlsrk%3D&md5=1dd15f5e7c2dbfc1aadfd0b15c89c288CAS | 15995742PubMed |
[31] A. D. Siewe, J. -Y. Kim, S. Kim, I. -H. Park, S. S. Lee, Inorg. Chem. 2014, 53, 393.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFejt7%2FI&md5=25bd76363448404ef83e5fb93ade9b09CAS | 24328242PubMed |
[32] S.-G. Lee, K.-M. Park, Y. Habata, S. S. Lee, Inorg. Chem. 2013, 52, 8416.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFKrsrjK&md5=980784e2e9046076135180c9aada9523CAS | 23886352PubMed |
[33] Bruker AXS, APEX2 Version 2009.1–0 Data Collection and Processing Software 2008 (Bruker AXS Inc.: Madison, WI).
[34] Bruker AXS, SHELXTL-PC Version 6.22 Program for Solution and Refinement of Crystal Structures 2001 (Bruker AXS Inc.: Madison, WI).