Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Effect of Alkyl Chain Length of Imidazolium Cation on the Electroreduction of CO2 to CO on Ag Electrode in Acetonitrile

Qianqian Wang A , Chengzhen Chen A , Juhua Zhong B C , Bo Zhang B and Zhenmin Cheng A
+ Author Affiliations
- Author Affiliations

A State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.

B Department of Physics, The College of Science, East China University of Science and Technology, Shanghai 200237, China.

C Corresponding author. Email: jhzhong@ecust.edu.cn

Australian Journal of Chemistry 70(3) 293-300 https://doi.org/10.1071/CH16138
Submitted: 8 March 2016  Accepted: 16 August 2016   Published: 15 September 2016

Abstract

The effect of imidazolium-based ionic liquid on the electroreduction of CO2 to CO over a Ag electrode in acetonitrile catholyte was investigated. The voltage–current profiles clearly indicate that the electroreduction of CO2 is sensitive to the alkyl chain length at the N1-position in imidazolium cation (MIM+). Density functional theory computation suggests that the onset potential of CO2 reduction is related to the association degree between MIM+ and CO2•– species. More importantly, preparative scale electrolysis shows that the selectivity and output rate for the target product CO are also significantly affected by MIM+. With the elongation of the alkyl group in MIM+ from ethyl to octyl, the Faradaic efficiency for CO remarkably increases from 87 ± 4 % to 97 ± 2 % and then remains almost unchanged. However, the curve of the current density with respect to the chain length of alkyl group shows a convex style. These results indicate the dependence of CO2 reduction efficiency on the MIM+ adsorbed on the Ag electrode surface.


References

[1]  M. F. Gu, X. X. Yan, Z. M. Cheng, Res. Chem. Intermed. 2016, 42, 391.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXms1ahsL8%3D&md5=4aca78d952de944bb0407e30e8db60f6CAS |

[2]  X. X. Yan, Z. M. Cheng, Z. Yue, Res. Chem. Intermed. 2014, 40, 3045.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXkt1KgsL0%3D&md5=1e7a0865b5dc109f1ab83c19ce6d5e3dCAS |

[3]  X. X. Yan, Z. M. Cheng, Z. Yue, P. Q. Yuan, Res. Chem. Intermed. 2014, 40, 3059.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXkt1Knt7o%3D&md5=88277f36d42b4dfbf1da35d9e93b0578CAS |

[4]  M. Alvarez-Guerra, S. Quintanilla, A. Irabien, Chem. Eng. J. 2012, 207–208, 278.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  G. Centi, S. Perathoner, Catal. Today 2009, 148, 191.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVCqs7nO&md5=3939233e8ea1f715ea96685c332d6382CAS |

[6]  S. Toemen, W. A. W. A. Bakar, R. Ali, J. CO Util. 2016, 13, 38.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitVSqtb7F&md5=f08d88df7def3ce72861bbdf0d30e3efCAS |

[7]  L. Cuesta-Aluja, A. Campos-Carrasco, J. Castilla, M. Reguero, A. M. Masdeu-Bultó, A. Aghmiz, J. CO Util. 2016, 14, 10.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhvVSgs7Y%3D&md5=fb51bbb7508a996e83cf54bf871aaf62CAS |

[8]  D. Niu, H. Wang, H. Li, Z. Wu, X. Zhang, Electrochim. Acta 2015, 158, 138.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVegtLY%3D&md5=b8c0b57d1c90475785c253264fc1b284CAS |

[9]  L. Sun, G. K. Ramesha, P. V. Kamat, J. F. Brennecke, Langmuir 2014, 30, 6302.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnvV2isbk%3D&md5=1c047068af2247fa2cfb6e0011c74fe5CAS | 24851903PubMed |

[10]  Q. Lu, J. Rosen, Y. Zhou, G. S. Hutchings, Y. C. Kimmel, J. G. Chen, F. Jiao, Nat. Commun. 2014, 5, 3242.
         | 24476921PubMed |

[11]  A. M. Appel, J. E. Bercaw, A. B. Bocarsly, H. Dobbek, D. L. DuBois, M. Dupuis, J. G. Ferry, E. Fujita, R. Hille, P. J. Kenis, C. A. Kerfeld, R. H. Morris, C. H. Peden, A. R. Portis, S. W. Ragsdale, T. B. Rauchfuss, J. N. Reek, L. C. Seefeldt, R. K. Thauer, G. L. Waldrop, Chem. Rev. 2013, 113, 6621.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpsFWqsLs%3D&md5=fc54ec44cc9180043529bdc950cb9c11CAS | 23767781PubMed |

[12]  C. Costentin, M. Robert, J. M. Saveant, Chem. Soc. Rev. 2013, 42, 2423.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXivFKrurc%3D&md5=b49f8184b793a6b5e383eb8a884bde4eCAS | 23232552PubMed |

[13]  Y. Alioshin, M. Kohn, A. Rothschild, J. Karni, J. Electrochem. Soc. 2015, 163, F79.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  K. Alenezi, J. Chem. 2016, 2016, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  J. L. DiMeglio, J. Rosenthal, J. Am. Chem. Soc. 2013, 135, 8798.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXovFWmurg%3D&md5=b48b9608ee695fffa7f698f856b27c7eCAS | 23735115PubMed |

[16]  Y. Hori, H. Ito, K. Okano, K. Nagasu, S. Sato, Electrochim. Acta 2003, 48, 2651.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltFCmsb4%3D&md5=40f428f39bb3cc6b85432b2356dc292aCAS |

[17]  S. Ma, Y. Lan, G. M. Perez, S. Moniri, P. J. Kenis, ChemSusChem 2014, 7, 866.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlenu7Y%3D&md5=45e71ea40f0ce566df4349c01c88a5adCAS | 24474718PubMed |

[18]  F. Franco, C. Cometto, F. Sordello, C. Minero, L. Nencini, J. Fiedler, R. Gobetto, C. Nervi, ChemElectroChem 2015, 2, 1372.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXpt1aqur4%3D&md5=b4bdaa87e62886c62d8b9149f8e21e54CAS |

[19]  S. Ikeda, T. Takagi, K. Ito, Bull. Chem. Soc. Jpn. 1987, 60, 2517.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXmtVOht7s%3D&md5=248a0622f0b742c57d18d0b9b9e5853bCAS |

[20]  Y. Hori, in Electrochemical CO2 Reduction on Metal Electrodes (Eds C. G. Vayenas, R. E. White, M. E. Gamboa-Aldeco) 2008, Vol. 42, Ch. 3, pp. 89–189 (Springer: New York, NY).

[21]  K. Chandrasekaran, L. O. M. Bockris, Surf. Sci. 1987, 185, 495.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXlt1Wluro%3D&md5=9421d43a06001643cdf643f80b76ff3eCAS |

[22]  J. Schneider, H. Jia, K. Kobiro, D. E. Cabelli, J. T. Muckerman, E. Fujita, Energy Environ. Sci. 2012, 5, 9502.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFCjs7nN&md5=7797c2568d5de49c0c50573f1f1f2dfbCAS |

[23]  C. Costentin, S. Drouet, M. Robert, J. M. Saveant, J. Am. Chem. Soc. 2012, 134, 11235.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotFGmtbc%3D&md5=c1eb97f213261d4d2175d30171779d1bCAS | 22670885PubMed |

[24]  M. Bourrez, F. Molton, S. Chardon-Noblat, A. Deronzier, Angew. Chem., Int. Ed. Engl. 2011, 50, 9903.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFyls73E&md5=034c78cd44e31a97c87f943a03fe44eaCAS |

[25]  L. E. Barrosse-Antle, R. G. Compton, Chem. Commun. 2009, 25, 3744.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  I. Garcia-Herrero, M. Alvarez-Guerra, A. Irabien, J. Chem. Technol. Biotechnol. 2016, 91, 507.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFamtrvK&md5=f8469ca9104c6f7a790ca0484763b220CAS |

[27]  B. A. Rosen, A. Salehi-Khojin, M. R. Thorson, W. Zhu, D. T. Whipple, P. J. Kenis, R. I. Masel, Science 2011, 334, 643.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlyqu7vE&md5=ed3be9d6189fd0d6f1043446cc40cfe3CAS | 21960532PubMed |

[28]  B. A. Rosen, J. L. Haan, P. Mukherjee, B. Braunschweig, W. Zhu, A. Salehi-Khojin, D. D. Dlott, R. I. Masel, J. Phys. Chem. C 2012, 116, 15307.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovFarur0%3D&md5=4edf23c6e81959c04e147b5fda4baf69CAS |

[29]  C. Lee, W. Yang, R. G. Parr, Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 785.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktFWrtbw%3D&md5=1446c2427b0599ea3e79a7334c6afa9cCAS |

[30]  E. Barton Cole, P. S. Lakkaraju, D. M. Rampulla, A. J. Morris, A. Esta, A. B. Bocarsly, J. Am. Chem. Soc. 2010, 132, 11539.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpsVCht7o%3D&md5=804aa10f889b13e37944daeef862859cCAS |

[31]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision D.01 2009 (Gaussian, Inc.: Wallingford, CT).

[32]  A. E. Reed, R. B. Weinstock, F. Weinhold, Chem. Phys. 1985, 83, 735.
         | 1:CAS:528:DyaL2MXltFSisLY%3D&md5=9a88dfbc50c12ddb816b619b6e8fa884CAS |

[33]  L. L. Snuffin, L. W. Whaley, Y. Lei, J. Electrochem. Soc. 2011, 158, F155.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpt1OnsLk%3D&md5=5d201656e416b06b08c8b6b5e3295f67CAS |

[34]  P. Hapiot, C. Lagrost, Chem. Rev. 2008, 108, 2238.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsVKitLc%3D&md5=6b6a291c47791560dfd56e4e1be2cc56CAS | 18564878PubMed |

[35]  M. Feroci, I. Chiarotto, S. V. Ciprioti, A. Inesi, Electrochim. Acta 2013, 109, 95.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1KrtL%2FM&md5=7e9adabc11492695239eec9399d8e385CAS |

[36]  G. H. Lane, Electrochim. Acta 2012, 83, 513.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsV2jsr3L&md5=79fe41a529203d3f22b9c82ad69b03aaCAS |

[37]  N. De Vos, C. Maton, C. V. Stevens, ChemElectroChem. 2014, 1, 1258.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlejtb7P&md5=78f7b0e3df6a5cec5b0ba53399d4c84aCAS |

[38]  M. Feroci, I. Chiarotto, G. Forte, A. Inesi, J. CO Util. 2013, 2, 29.
         | 1:CAS:528:DC%2BC2cXht1erurs%3D&md5=d518ba8fd31b526aeba5d1ee68cb11c7CAS |

[39]  B. Gorodetsky, T. Ramnial, N. R. Branda, J. A. C. Clyburne, Chem. Commun. 2004, 1, 1972.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  M. Feroci, I. Chiarotto, G. Forte, S. Vecchio Ciprioti, A. Inesi, ChemElectroChem 2014, 1, 1407.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlejtLfJ&md5=3e0fa8ecc1bd86d29e452ab89919b6a9CAS |

[41]  F. A. Hanc-Scherer, M. A. Montiel, V. Montiel, E. Herrero, C. M. Sánchez-Sánchez, Phys. Chem. Chem. Phys. 2015, 17, 23909.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht12ktrbF&md5=d09390583d50d8da77800c4b6f63a647CAS | 26307480PubMed |

[42]  M. M. Islam, T. Ohsaka, J. Phys. Chem. C 2008, 112, 1269.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitFehtQ%3D%3D&md5=16fc202439668a8a4a776cfd38c55322CAS |

[43]  M. M. Islam, B. N. Ferdousi, T. Okajima, T. Ohsaka, Electrochem. Commun. 2005, 7, 789.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlt1Kgsbo%3D&md5=5634db31cca0dda63d35b5e6944fab1cCAS |

[44]  H.-R. Jhong, S. Ma, P. J. A. Kenis, Curr. Opin. Chem. Eng. 2013, 2, 191.
         | Crossref | GoogleScholarGoogle Scholar |

[45]  J. Shi, F. Shi, N. Song, J.-X. Liu, X.-K. Yang, Y.-J. Jia, Z.-W. Xiao, P. Du, J. Power Sources 2014, 259, 50.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXls1ent7c%3D&md5=1f96ed1eaa4800098a3225532249ad88CAS |

[46]  B. A. Rosen, W. Zhu, G. Kaul, A. Salehi-Khojin, R. I. Masel, J. Electrochem. Soc. 2012, 160, H138.
         | Crossref | GoogleScholarGoogle Scholar |

[47]  J. A. Veith, G. Sposito, Soil Sci. Soc. Am. J. 1977, 41, 697.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXht1Ciu78%3D&md5=31b7a62f7be973cc0756d3d6faf8e414CAS |

[48]  R. A. Griffin, A. K. Au, Soil Sci. Soc. Am. J. 1977, 41, 880.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXhtVyjs74%3D&md5=f1b7722aaae5fa7e3fe9f33e6a01faa8CAS |

[49]  M. G. Freire, L. M. N. B. F. Santos, A. M. Fernandes, J. A. P. Coutinho, I. M. Marrucho, Fluid Phase Equilib. 2007, 261, 449.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFyksLzI&md5=68ac3069c525c3ef99ee448dd3010449CAS |

[50]  D. Niu, H. Wang, H. Li, X. Zhang, Electrochem. Commun. 2015, 52, 58.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitFOntbo%3D&md5=4364111ac14356a452335ab595af88fcCAS |

[51]  B. Gurkan, B. F. Goodrich, E. M. Mindrup, L. E. Ficke, M. Massel, S. Seo, T. P. Senftle, H. Wu, M. F. Glaser, J. K. Shah, J. Phys. Chem. Lett. 2010, 1, 3494.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFSkur%2FP&md5=1c98ac4e120733dababe3fda19fc2774CAS |