Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Self-Assembly of an Amphiphilic OEG-Linked Glutamide Lipid

Shuo Wang A , Youguo Zhang A , Qiang Li A , Rongqin Sun B , Lin Ma A and Liangchun Li A C
+ Author Affiliations
- Author Affiliations

A School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.

B School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.

C Corresponding author. Email: lilc76@gmail.com

Australian Journal of Chemistry 70(1) 52-60 https://doi.org/10.1071/CH16127
Submitted: 3 March 2016  Accepted: 17 May 2016   Published: 17 June 2016

Abstract

Amphiphilic peptides with or without oligoethylene glycol (OEG) chains based on 3,4-bis(benzyloxy)benzoic-linked glutamide were designed and their self-assembly was investigated. It was found that the amphiphilic peptide 3 with OEG chains could not only form stable gels in a wide range of solvents, but also showed better solubility in solvents than those without OEG chains. Fibrillar and nanotube structures were found in the gels formed and the width of the fibres could be tuned with added water content. The UV-vis and XRD results suggested that the driving forces for the peptide self-assembly were mainly intermolecular π–π and hydrogen-bonding interactions. These results provide a deeper understanding of the self-assembly mechanism and size control of nanofibrils formed by an OEG-based amphiphilic peptide.


References

[1]  M. Reches, E. Gazit, Science 2003, 300, 625.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtVymurk%3D&md5=7d5ed6cc2ce86f7988d935f74ae59aeaCAS | 12714741PubMed |

[2]  J. M. Fletcher, R. L. Harniman, F. R. Barnes, A. L. Boyle, A. Collins, J. Mantell, T. H. Sharp, M. Antognozzi, P. J. Booth, N. Linden, M. J. Miles, R. B. Sessions, P. Verkade, D. N. Woolfson, Science 2013, 340, 595.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmslWksLY%3D&md5=9a282736f2201171b683e2860b75b707CAS | 23579496PubMed |

[3]  H. Ejima, J. J. Richardson, K. Liang, J. P. Best, M. P. van Koeverden, G. K. Such, J. Cui, F. Caruso, Science 2013, 341, 154.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVOku77F&md5=7097bf3fbc9f185c9c734861362eda3aCAS | 23846899PubMed |

[4]  W. E. Bentley, G. F. Payne, Science 2013, 341, 136.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFKjtrbM&md5=02e19c92069ed179622c5c656c729987CAS | 23846896PubMed |

[5]  X. Ye, C. Zhu, P. Ercius, S. N. Raja, B. He, M. R. Jones, M. R. Hauwiller, Y. Liu, T. Xu, A. P. Alivisatos, Nat. Commun. 2015, 6, 10052.
         | Crossref | GoogleScholarGoogle Scholar | 26628256PubMed |

[6]  Y. Che, D. E. Gross, H. Huang, D. Yang, X. Yang, E. Discekici, Z. Xue, H. Zhao, J. S. Moore, L. Zang, J. Am. Chem. Soc. 2012, 134, 4978.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisVGht7c%3D&md5=4967885d4e0ebe02bd9695963c8d0ac1CAS | 22339204PubMed |

[7]  X. Du, J. Zhou, B. Xu, Chem. Asian J. 2014, 9, 1446.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXkt1Snu7Y%3D&md5=65dbd29d0d3eaa0fb13f45e04e72771cCAS | 24623474PubMed |

[8]  Y. Feng, Y. M. He, Q. H. Fan, Chem. Asian J. 2014, 9, 1724.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXltFKqtbk%3D&md5=8436e2ae4cf4519ec6801a9f1f5566feCAS | 24683006PubMed |

[9]  Y. Kuang, Y. Gao, J. Shi, J. Li, B. Xu, Chem. Commun. 2014, 50, 2772.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXisVWnt7g%3D&md5=064289d94cad0cb7012370c1531e4690CAS |

[10]  S. Rosselli, A. D. Ramminger, T. Wagner, B. Silier, S. Wiegand, W. Häuûler, V. S. G. Lieser, S. Höger, Angew. Chem. Int. Ed. 2001, 40, 3137.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  M. R. Ghadiri, Adv. Mater. 1995, 7, 675.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXosVansrg%3D&md5=eef0913eedb85b1a164ff42891eff86fCAS |

[12]  L. S. Shimizu, A. D. Hughes, M. D. Smith, M. J. Davis, B. P. Zhang, H.-C. zur Loye, K. D. Shimizu, J. Am. Chem. Soc. 2003, 125, 14972.
         | 1:CAS:528:DC%2BD3sXovVOhtr0%3D&md5=75d734b41545e9b09748f8f3a5fcd1feCAS | 14653716PubMed |

[13]  M. Amorin, L. Castedo, J. R. Granja, Chem. – Eur. J. 2005, 11, 6543.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Cnu77L&md5=b9dda820ee6c8c8c1790bcd1b12c7362CAS | 16106459PubMed |

[14]  Z. Shen, T. Wang, M. Liu, Chem. Commun. 2014, 50, 2096.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFCgtbc%3D&md5=797350654bbbebd64c4a8aea2083a441CAS |

[15]  C. Liu, Q. Jin, K. Lv, L. Zhang, M. Liu, Chem. Commun. 2014, 50, 3702.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXktF2rurw%3D&md5=5b2ba5c90c2463a726073e553e74482cCAS |

[16]  H. M. Keizer, R. P. Sijbesma, Chem. Soc. Rev. 2005, 34, 226.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhs1agurY%3D&md5=4db40814f73e583ccafd2db214217f8eCAS | 15726159PubMed |

[17]  D. Pasini, M. Ricci, Curr. Org. Synth. 2007, 4, 59.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVSrtL8%3D&md5=d0de9c9c4d630d954ae450713b1f22e1CAS |

[18]  V. Percec, A. E. Dulcey, M. Peterca, M. Ilies, S. Nummelin, M. J. Sienkowska, P. A. Heiney, Proc. Natl. Acad. Sci. USA 2006, 103, 2518.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksF2rs7o%3D&md5=1dbb877d6ec0a18bf50ae854ecd4947bCAS | 16469843PubMed |

[19]  B. M. Rosen, M. Peterca, K. Morimitsu, A. E. Dulcey, P. Leowanawat, A. M. Resmerita, M. R. Imam, V. Percec, J. Am. Chem. Soc. 2011, 133, 5135.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivFyjsbk%3D&md5=25edeb9569ca20d6034ebe304067fe2eCAS | 21391688PubMed |

[20]  J. S. Martinez, Science 2000, 287, 1245.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtlOqs7o%3D&md5=6470fb6214e793c21fe88072bb15c7d4CAS | 10678827PubMed |

[21]  J. A. A. W. Elemans, A. E. Rowan, R. J. M. Nolte, J. Mater. Chem. 2003, 13, 2661.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotlyqtbs%3D&md5=24df786b4397c2ccfbaf4ac324f3ebdaCAS |

[22]  J. H. Ryu, N. K. Oh, M. Lee, Chem. Commun. 2005, 1770.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisFygsrg%3D&md5=2ac0be5d7374c481e868f11f6a912852CAS |

[23]  Y. Kira, Y. Okazaki, T. Sawada, M. Takafuji, H. Ihara, Amino Acids 2010, 39, 587.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVaisL8%3D&md5=1a022d7a0fc44baf1f07d0e24f999c14CAS | 20108007PubMed |

[24]  A. Hernik, W. Pulawski, B. Fedorczyk, D. Tymecka, A. Misicka, S. Filipek, W. Dzwolak, Langmuir 2015, 31, 10500.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVyntLzK&md5=2d051fef73af909d0d1ac0a3cb14f9dfCAS | 26362583PubMed |

[25]  E. R. da Silva, W. A. Alves, V. Castelletto, M. Reza, J. Ruokolainen, R. Hussain, I. W. Hamley, Chem. Commun. 2015, 51, 11634.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVClsrfJ&md5=6933ffeb98b006386a889578bcde56faCAS |

[26]  X. Zhu, M. Liu, Langmuir 2011, 27, 12844.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1OrtrbN&md5=053f9a247168d510787f69ba64dcba3cCAS | 21942537PubMed |

[27]  Y. Li, M. Liu, Chem. Commun. 2008, 43, 5571.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  J. Jiang, T. Wang, M. Liu, Chem. Commun. 2010, 46, 7178.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFOntLvK&md5=41a80dd5cdd68c884830a86163d25657CAS |

[29]  P. Duan, X. Zhu, M. Liu, Chem. Commun. 2011, 47, 5569.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlt1Cksbo%3D&md5=f4bf23242b1e8e0997916f242b2e6863CAS |

[30]  Q. Jin, L. Zhang, X. Zhu, P. Duan, M. Liu, Chem. – Eur. J. 2012, 18, 4916.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjvVWku78%3D&md5=94e6dd8bf2c8c7cc7b26644d6e634192CAS | 22416042PubMed |

[31]  W. Miao, L. Zhang, X. Wang, L. Qin, M. Liu, Langmuir 2013, 29, 5435.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlslansLg%3D&md5=1955a7941b6421c53ce21c48a47d05f1CAS | 23573951PubMed |

[32]  S. Nowag, R. Haag, Angew. Chem. 2014, 53, 49.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVykurrL&md5=835848af2a2fc77dc18905efb11efb06CAS |

[33]  Y. Tang, L. Liu, J. Wu, J. Duan, J. Colloid Interface Sci. 2013, 397, 24.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtF2qtbY%3D&md5=473057419f2bcc4d07d73d9f78e4fde5CAS | 23452517PubMed |

[34]  L. Qin, P. Duan, F. Xie, L. Zhang, M. Liu, Chem. Commun. 2013, 49, 10823.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1OlsbrP&md5=9afb2a1df7960d2b505831e09d07bf2eCAS |

[35]  P. Duan, Y. Li, L. Li, J. Deng, M. Liu, J. Phys. Chem. B 2011, 115, 3322.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjt1Cqs7Y%3D&md5=e0438fe73f09f88342237435a7367acdCAS | 21405142PubMed |

[36]  L. Zhang, L. Qin, X. Wang, H. Cao, M. Liu, Adv. Mater. 2014, 26, 6959.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXltFOnsr0%3D&md5=d37406150857edecc68612fe5473e00eCAS | 24687217PubMed |

[37]  S. R. Nam, H. Y. Lee, J. I. Hong, Chem. – Eur. J. 2008, 14, 6040.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptVOgsL4%3D&md5=0e68c2bc8442ec608ced392daaf67c59CAS | 18504726PubMed |

[38]  J. H. van Esch, B. L. Feringa, Angew. Chem. Int. Ed. 2000, 39, 2263.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXltlGktbk%3D&md5=9f0179747b4c9f722775fa98cee16dc5CAS |

[39]  O. Gronwald, E. Snip, S. Shinkai, Curr. Opin. Colloid Interface Sci. 2002, 7, 148.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjslOnsro%3D&md5=47a78960e62030314902e63ee8682a31CAS |

[40]  M. George, R. G. Weiss, Acc. Chem. Res. 2006, 39, 489.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksFKktbY%3D&md5=c5506d928440e667e8dc65a2eb9c7535CAS | 16906745PubMed |

[41]  L. Qin, K. Lv, Z. Shen, M. Liu, in Soft Matter Nanotechnology: From Structure to Function (Eds X. Chen, H. Fuchs) 2015, Vol. 21, pp. 23–26 (Wiley-VCH: Weinheim).

[42]  Z. Lin, L. Li, Y. Yang, H. Zhan, Y. Hu, Z. Zhou, J. Zhu, Q. Wang, J. Deng, Org. Biomol. Chem. 2013, 11, 8443.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVWmsLfM&md5=3db406621e6019d7213c103952d75ffcCAS | 24202293PubMed |

[43]  L. Li, H. Zhan, P. Duan, J. Liao, J. Quan, Y. Hu, Z. Chen, J. Zhu, M. Liu, Y.-D. Wu, J. Deng, Adv. Funct. Mater. 2012, 22, 3051.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlsFWgsr0%3D&md5=ad1248604552c4fe6ec75cdfc6a431ddCAS |

[44]  O. T. Bensaid, A. Boullay, C. Amgoune, L. Pradel, E. Harivardhan Reddy, S. Didier, G. Sable, D. Louit, D. Bazile, Bourissou, Biomacromolecules 2013, 14, 1189.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXivFCgtLw%3D&md5=4eee9a702b64df84a15d0189afdc07dbCAS |

[45]  C. C. A. Ng, S. Ciampi, J. B. Harper, J. J. Gooding, Surf. Sci. 2010, 604, 1388.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvFKgtbk%3D&md5=0469212e263684d7ad463f94dea82cafCAS |

[46]  D. Zhao, N. Liu, K. Shi, X. Wang, G. Wu, Colloids Surf. B. 2015, 135, 682.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVCju7fN&md5=ecf9fb974974847bfbd37725c9f93eacCAS |

[47]  C. Chen, D. Wu, W. Fu, Z. Li, Aust. J. Chem. 2014, 67, 59.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjtVCqtg%3D%3D&md5=7742816c0bcbf1fba767cbbd4ce263d7CAS |

[48]  C. Chen, D. Wu, W. Fu, Z. Li, Biomacromolecules 2013, 14, 2494.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVKit7zJ&md5=196cef01d7bb8fc85d05854df9bc6169CAS | 23822551PubMed |

[49]  Y. Li, T. Wang, M. Liu, Soft Matter 2007, 3, 1312.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Sms7zM&md5=4360696788536234daf0c592574370b9CAS |

[50]  R. J. Williams, J. Gardiner, A. B. Sorensen, S. Marchesan, R. J. Mulder, K. M. McLean, P. G. Hartley, Aust. J. Chem. 2013, 66, 572.
         | 1:CAS:528:DC%2BC3sXnsl2ms70%3D&md5=83d8cce7529e2e50cb2600b3ff9a8c48CAS |

[51]  J. P. Desvergne, T. Brotin, D. Meerschaut, G. Clavier, F. Placin, J. L. Pozzo, H. B. Laurent, New J. Chem. 2004, 28, 234.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXoslGmsg%3D%3D&md5=5e3fc72098ad4b6be3a9e755cd8dd93fCAS |

[52]  A. R. Hirst, I. A. Coates, T. R. Boucheteau, J. F. Miravet, B. Escuder, V. Castelletto, I. W. Hamley, D. K. Smith, J. Am. Chem. Soc. 2008, 130, 9113.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntlKrurs%3D&md5=4217bc128650c5e6323d1d32f7313c82CAS | 18558681PubMed |

[53]  Z. Lin, J. Liu, L. Li, Q. Wang, J. Zhu, J. Deng, Chin. J. Synth. Chem. 2013, 21, 432.