Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Bioinspired Polymers: Antimicrobial Polymethacrylates

Katherine E. S. Locock A
+ Author Affiliations
- Author Affiliations

A CSIRO Manufacturing, Bayview Avenue, Clayton, Vic. 3168, Australia. Email: katherine.locock@csiro.au




Dr Katherine Locock completed her Ph.D. degree at the University of Sydney in 2010 under the supervision of Professors Robin Allan and Graham Johnston, where she studied the development of conformationally restricted GABA analogues as potential treatments for Alzheimer’s disease and mood disorders. She was later employed as an associate lecturer in the Pharmacology Department at the University. In 2012, Dr Locock joined CSIRO as an OCE Postdoctoral Fellow in the Materials Science and Engineering Division before being appointed as a Research Scientist in the Manufacturing Flagship in 2015. Dr Locock’s research focuses on the development of novel, biologically active polymers, based on CSIRO’s patented RAFT technology. Her work has led to a number of publications, a book chapter, and invitations to speak internationally. She was awarded the CSIRO Staff Association Women in Science Scholarship in 2013, and in 2014 was selected by the UK Royal Society as one of 30 researchers to represent Australia at the Commonwealth Sciences Conference in Bangalore, India.

Australian Journal of Chemistry 69(7) 717-724 https://doi.org/10.1071/CH16047
Submitted: 27 January 2016  Accepted: 31 March 2016   Published: 4 May 2016

Abstract

Naturally occurring antimicrobial peptides have been honed by evolution over millions of years to give highly safe and efficacious antimicrobials that form part of many organisms’ immune systems. By studying these peptides to identify key aspects of structure and composition, suitable synthetic polymer mimics can be designed that hold potential as anti-infective agents. This review focusses on an important aspect of peptide mimicry, that of replicating the chemical functionality provided by key amino acids present in antimicrobial peptides. These include polymethacrylate mimics of arginine-rich and tryptophan-rich peptides. Systematic investigation of the structure–activity relationships of these polymers identifies the guanidine based poly(methylmethacrylate-co-2-guanidinoethyl methacrylate) (pMMA-co-GEMA) copolymers with low molecular weight and low methyl content as having superior activity profiles when compared with all other combinations. Unique antibiofilm activity of these polymers is also revealed in in vitro testing against monomicrobial and polymicrobial biofilms of the bacteria Staphylococcus aureus and the fungus Candida albicans. This highlights Mother Nature as an important resource in drug development and identifies the arginine-mimicking polymethacrylates as important leads for the development of a new generation of antimicrobial agents to tackle resistance.


References

[1]  (a) D. Dominey-Howes, B. Bajorek, C. A. Michael, B. Betteridge, J. Iredell, M. Labbate, Front. Microbiol. 2015, 6, 927.
         | 26388864PubMed |
      (b) G. M. Rossolini, F. Arena, P. Pecile, S. Pollini, Curr. Opin. Pharmacol. 2014, 18, 56.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) I. M. Gould, Int. J. Antimicrob. Agents 2010, 36, S1.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) G. L. French, Int. J. Antimicrob. Agents 2010, 36, S3.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) A. T. A. El-Tahawy, Saudi Med. J. 2004, 25, 837.
      (f) H. C. Neu, Science 1992, 257, 1064.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  World Health Organization, Antimicrobial Resistance: Global Report on Surveillance 2014 2014 (Geneva, Switzerland). Available at: http://www.who.int/drugresistance/documents/surveillancereport/en/

[3]  (a) Y. J. Gordon, E. G. Romanowski, A. M. McDermott, Curr. Eye Res. 2005, 30, 505.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmt1Gksbc%3D&md5=cdd6b1abd85ad49d23c63c205d4366cfCAS | 16020284PubMed |
      (b) R. E. W. Hancock, H.-G. Sahl, Nat. Biotechnol. 2006, 24, 1551.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Y. Li, Q. Xiang, Q. Zhang, Y. Huang, Z. Su, Peptides 2012, 37, 207.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) F. Harris, S. R. Dennison, D. A. Phoenix, Curr. Protein Pept. Sci. 2009, 10, 585.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGqtL3M&md5=87a63cccb5e2a055d4cb1bfd997e7810CAS | 19751192PubMed |
      (b) K. A. Brogden, Nat. Rev. Microbiol. 2005, 3, 238.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  A. Giangaspero, L. Sandri, A. Tossi, Eur. J. Biochem. 2001, 268, 5589.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotFWqt7k%3D&md5=e7993ae8472650cd5825dce45e2b939aCAS | 11683882PubMed |

[6]  M. Zasloff, Nature 2002, 415, 389.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtVCgsLs%3D&md5=ab7d76ed3bdd4a3e6ef42329d607f2e5CAS | 11807545PubMed |

[7]  M. F. Ilker, K. Nüsslein, G. N. Tew, E. B. Coughlin, J. Am. Chem. Soc. 2004, 126, 15870.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpslegu70%3D&md5=adcd44b2cf50e894b3f627cfa9f21e21CAS | 15571411PubMed |

[8]  J. Budhathoki-Uprety, L. Peng, C. Melander, B. M. Novak, ACS Macro Lett. 2012, 1, 370.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XislWjsr4%3D&md5=a864548c4fe60232e6bd49d8be35e120CAS |

[9]  V. Sambhy, B. R. Peterson, A. Sen, Angew. Chem. Int. Ed. Engl. 2008, 47, 1250.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXit1GqsL4%3D&md5=81d393f0ac572e65e90bd68a84bc6c37CAS | 18181131PubMed |

[10]  A. C. Engler, J. P. K. Tan, Z. Y. Ong, D. J. Coady, V. W. L. Ng, Y. Y. Yang, J. L. Hedrick, Biomacromolecules 2013, 14, 4331.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslOnurvP&md5=c393e9486e1b041c47a29477b7e009a3CAS | 24228904PubMed |

[11]  B. P. Mowery, A. H. Lindner, B. Weisblum, S. S. Stahl, S. H. Gellman, J. Am. Chem. Soc. 2009, 131, 9735.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXns1Shtb8%3D&md5=73dd980f065a1c5e13f648a61afcd094CAS | 19601684PubMed |

[12]  M. R. Gizdavic-Nikolaidis, J. R. Bennett, S. Swift, A. J. Easteal, M. Ambrose, Acta Biomater. 2011, 7, 4204.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVSkt7%2FO&md5=20afa5860d3c6f74e77eae08a010737fCAS | 21827876PubMed |

[13]  (a) K. Kuroda, W. F. DeGrado, J. Am. Chem. Soc. 2005, 127, 4128.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhslGgt7o%3D&md5=4d0bdc8f5888b8b40e673b8f94bb617dCAS | 15783168PubMed |
      (b) K. E. S. Locock, T. D. Michl, J. D. P. Valentin, K. Vasilev, J. D. Hayball, Y. Qu, A. Traven, H. J. Griesser, L. Meagher, M. Haeussler, Biomacromolecules 2013, 14, 4021.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) E. F. Palermo, K. Kuroda, Appl. Microbiol. Biotechnol. 2010, 87, 1605.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  M. S. Ganewatta, C. Tang, Polymer 2015, 63, A1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXks1yhurg%3D&md5=5a9a28d2152e4302dda0403f9ed3231fCAS |

[15]  K. Kuroda, W. F. DeGrado, Abstr. Pap. Am. Chem. Soc. 2004, 228, U356.

[16]  (a) K. Kuroda, G. A. Caputo, W. F. DeGrado, Chem. – Eur. J. 2009, 15, 1123.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhslWmu70%3D&md5=2c7cd4fd0537a6ed0216e9807bdd7844CAS | 19072946PubMed |
      (b) E. F. Palermo, K. Kuroda, Biomacromolecules 2009, 10, 1416.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) E. F. Palermo, I. Sovadinova, K. Kuroda, Biomacromolecules 2009, 10, 3098.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  G. J. Gabriel, J. A. Maegerlein, C. F. Nelson, J. M. Dabkowski, T. Eren, K. Nusslein, G. N. Tew, Chem. – Eur. J. 2009, 15, 433.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptlWgug%3D%3D&md5=a76d8044ee9991b1a98aa48167e31749CAS | 19021176PubMed |

[18]  (a) L. Baldassarre, F. Pinnen, C. Cornacchia, E. Fornasari, L. Cellini, M. Baffoni, I. Cacciatore, J. Pept. Sci. 2012, 18, 567.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVCjsbjN&md5=93cd29f54c3ae915d884698f63418237CAS | 22807132PubMed |
      (b) E. de Leeuw, M. Rajabi, G. Zou, M. Pazgier, W. Lu, FEBS Lett. 2009, 583, 2507.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. S. Ebada, P. Proksch, Mini Rev. Med. Chem. 2011, 11, 225.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) H. Tanabe, X. Qu, C. S. Weeks, J. E. Cummings, S. Kolusheva, K. B. Walsh, R. Jelinek, T. K. Vanderlick, M. E. Selsted, A. J. Ouellette, J. Biol. Chem. 2004, 279, 11976.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) A. S. Veiga, C. Sinthuvanich, D. Gaspar, H. G. Franquelim, M. A. R. B. Castanho, J. P. Schneider, Biomaterials 2012, 33, 8907.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  G. Zou, E. de Leeuw, C. Li, M. Pazgier, C. Li, P. Zeng, W.-Y. Lu, J. Lubkowski, W. Lu, J. Biol. Chem. 2007, 282, 19653.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntFWrtr0%3D&md5=d13dbe69edd794c47862fcc078e9387eCAS | 17452329PubMed |

[20]  (a) R. Abes, A. Arzumanov, H. Moulton, S. Abes, G. Ivanova, M. J. Gait, P Iversen, B Lebleu, J. Pept. Sci. 2008, 14, 455.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkslyjtLs%3D&md5=f2d4a10f083cd68313a774720d8dd082CAS | 18236382PubMed |
      (b) R. Brock, Bioconjug. Chem. 2014, 25, 863.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) G. Gasparini, E.-K. Bang, J. Montenegro, S. Matile, Chem. Commun. 2015, 10389.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  (a) F. Sgolastra, B. M. Deronde, J. M. Sarapas, A. Som, G. N. Tew, Acc. Chem. Res. 2013, 46, 2977.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVSit7zJ&md5=a3b17ec84a3312cb2c5664a52f0a0dc3CAS | 24007507PubMed |
      (b) J. V. Alegre-Requena, E. Marques-Lopez, R. P. Herrera, Aust. J. Chem. 2014, 67, 965.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  T. D. Michl, K. E. S. Locock, N. E. Stevens, J. D. Hayball, K. Vasilev, A. Postma, Y. Qu, A. Traven, M. Haeussler, L. Meagher, H. J. Griesser, Polym. Chem. 2014, 5, 5813.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFGls7bM&md5=d20dd05691feaeb251c5720ec4215ea6CAS |

[23]  K. E. Locock, L. Meagher, M. Haeussler, Anal. Chem. 2014, 86, 2131.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht12ksrY%3D&md5=eb16de3450f75a7318137843b19b8e3cCAS | 24483846PubMed |

[24]  K. E. S. Locock, T. D. Michl, N. Stevens, J. D. Hayball, K. Vasilev, A. Postma, H. J. Griesser, L. Meagher, M. Haeussler, ACS Macro Lett. 2014, 3, 319.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXksVWiurs%3D&md5=8351922259f114eae25c78593712c739CAS |

[25]  (a) J. B. Rothbard, T. C. Jessop, R. S. Lewis, B. A. Murray, P. A. Wender, J. Am. Chem. Soc. 2004, 126, 9506.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvVSktr8%3D&md5=a49dd57101033078c7dd0b0682d9adb9CAS | 15291531PubMed |
      (b) N. W. Schmidt, A. Mishra, G. H. Lai, M. Davis, L. K. Sanders, D. Tran, A. Garcia, K. P. Tai, P. B. McCray, A. J. Ouellette, M. E. Selsted, G. C. L. Wong, J. Am. Chem. Soc. 2011, 133, 6720.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. A. Schmitt, B. Weisblum, S. H. Gellman, J. Am. Chem. Soc. 2004, 126, 6848.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) N. Umezawa, M. A. Gelman, M. C. Haigis, R. T. Raines, S. H. Gellman, J. Am. Chem. Soc. 2002, 124, 368.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  (a) D. I. Chan, E. J. Prenner, H. J. Vogel, Biochim. Biophys. Acta – Biomembr. 2006, 1758, 1184.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVanu7rP&md5=bc173c7a536e6c813e6be9f8cdb680cbCAS |
      (b) D. Delaroche, B. Aussedat, S. Aubry, G. Chassaing, F. Burlina, G. Clodic, G. Bolbach, S. Lavielle, S. Sagan, Anal. Chem. 2007, 79, 1932.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) D. J. Schibli, R. F. Epand, H. J. Vogel, R. M. Epand, Biochem. Cell Biol. 2002, 80, 667.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  (a) A. Chattopadhyay, S. Mukherjee, R. Rukmini, S. S. Rawat, S. Sudha, Biophys. J. 1997, 73, 839.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXkvFCmu7k%3D&md5=6fa49d1d4e5efd5c978b11fb6b7a6c86CAS | 9251800PubMed |
      (b) A. J. de Jesus, T. W. Allen, Biochim. Biophys. Acta – Biomembr. 2013, 1828, 864.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  (a) V. V. Andrushchenko, M. H. Aarabi, L. T. Nguyen, E. J. Prenner, H. J. Vogel, Biochim. Biophys. Acta – Biomembr. 2008, 1778, 1004.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktVGrs70%3D&md5=432b0c997aa26eb4d1b04676904c3f74CAS |
      (b) V. V. Andrushchenko, H. J. Vogel, E. J. Prenner, Biochim. Biophys. Acta – Biomembr. 2006, 1758, 1596.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) V. V. Andrushchenko, H. J. Vogel, E. J. Prenner, Biochim. Biophys. Acta – Biomembr. 2007, 1768, 2447.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) H. Sun, D. V. Greathouse, O. S. Andersen, R. E. Koeppe, J. Biol. Chem. 2008, 283, 22233.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  M. Schiffer, C. H. Chang, F. J. Stevens, Protein Eng. 1992, 5, 213.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XksVaqu7w%3D&md5=9e0f176ac3405ff30bbc81ccdfbcfd37CAS | 1409540PubMed |

[30]  Y. Qu, K. E. S. Locock, J. Verma-Gaur, I. Hay, L. Meagher, A. Traven, J. Antimicrob. Chemother. 2016, 71, 413.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xjs1Oiur8%3D&md5=df9bafafc775e9f994b6fd4b93835b15CAS | 26490013PubMed |

[31]  (a) U. Römling, C. Balsalobre, J. Intern. Med. 2012, 272, 541.
         | Crossref | GoogleScholarGoogle Scholar | 23025745PubMed |
      (b) T. Bjarnsholt, APMIS 2013, 121, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  H. Wu, C. Moser, H.-Z. Wang, N. Hoiby, Z.-J. Song, Int. J. Oral Sci. 2015, 7, 1.
         | Crossref | GoogleScholarGoogle Scholar | 25504208PubMed |

[33]  J. W. Costerton, P. S. Stewart, E. P. Greenberg, Science 1999, 284, 1318.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjs1Squ78%3D&md5=ce3c9fab54806bac656ffe765ff86207CAS | 10334980PubMed |

[34]  A. I. Hidron, J. R. Edwards, J. Patel, T. C. Horan, D. M. Sievert, D. A. Pollock, S. K. Fridkin, Infect. Control Hosp. Epidemiol. 2008, 29, 996.
         | Crossref | GoogleScholarGoogle Scholar | 18947320PubMed |

[35]  (a) E. Bouza, A. Burillo, P. Munoz, J. Guinea, M. Marin, M. Rodriguez-Creixems, J. Antimicrob. Chemother. 2013, 68, 1881.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFClu7fF&md5=59852b4336f40c489838d16edf2f11b6CAS | 23535881PubMed |
      (b) S. H. Kim, Y. K. Yoon, M. J. Kim, J. W. Sohn, Clin. Microbiol. Infect. 2013, 19, 62.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) D. L. Dyess, R. N. Garrison, D. E. Fry, Arch. Surg. 1985, 120, 345.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  M. M. Harriott, M. C. Noverr, Antimicrob. Agents Chemother. 2009, 53, 3914.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFCjsr3P&md5=6954f2103597ae77551be606e8caf54eCAS | 19564370PubMed |