Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

High Glass Transition Temperature Fluoropolymers for Hydrophobic Surface Coatings via RAFT Copolymerization

Molly Rowe A , Guo Hui Teo A B , James Horne C , Omar Al-Khayat D E , Chiara Neto D and Stuart C. Thickett A B F
+ Author Affiliations
- Author Affiliations

A Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.

B School of Physical Sciences (Chemistry), University of Tasmania, Sandy Bay, Tas. 7005, Australia.

C Central Science Laboratory, University of Tasmania, Sandy Bay, Tas. 7005, Australia.

D School of Chemistry F11, The University of Sydney, Sydney, NSW 2006, Australia.

E School of Chemical and Biomolecular Engineering J01, The University of Sydney, NSW 2006, Australia.

F Corresponding author. Email: stuart.thickett@utas.edu.au

Australian Journal of Chemistry 69(7) 725-734 https://doi.org/10.1071/CH15787
Submitted: 15 December 2015  Accepted: 5 February 2016   Published: 24 February 2016

Abstract

The preparation of polymer thin films or surface coatings that display a static water contact angle >95° often requires hierarchical roughness features or surface functionalization steps. In addition, inherently hydrophobic polymers such as fluoropolymers often possess low glass transition temperatures, reducing their application where thermal stability is required. Herein, the first reported synthesis of 2,3,4,5,6-pentafluorostyrene (PFS) and N-phenylmaleimide (NMI) via reversible addition–fragmentation chain-transfer (RAFT)-mediated free radical polymerization is presented, with a view towards the preparation of inherently hydrophobic polymers with a high glass transition temperature. A suite of copolymers were prepared and characterized, and owing to the inherent rigidity of the maleimide group in the polymer backbone and π–π interactions between adjacent PFS and NMI groups, very high glass transition temperatures were achieved (up to 180°C). The copolymerization of N-pentafluorophenylmaleimide was also performed, also resulting in extremely high glass transition temperature copolymers; however, these polymers did not exhibit characteristics of being under RAFT control. Thin films of PFS-NMI copolymers exhibited a static contact angle ~100°, essentially independent of the amount of NMI incorporated into the polymer.


References

[1]  L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, D. Zhu, Adv. Mater. 2002, 14, 1857.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitlOhsg%3D%3D&md5=421c4352df688ec78633491199f2f774CAS |

[2]  A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe, Adv. Mater. 1999, 11, 1365.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnt1Kgur0%3D&md5=e05a7f0189017806023556fa09bb1b14CAS |

[3]  M. Nosonovsky, B. Bhushan, Curr. Opin. Colloid Interface Sci. 2009, 14, 270.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotFWjsLw%3D&md5=e02742606f96f158686896625bfea0f7CAS |

[4]  M. Sadat‐Shojai, A. Ershad‐Langroudi, J. Appl. Polym. Sci. 2009, 112, 2535.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjs1ygsbo%3D&md5=6d80497416f67d49fb94af61e5bf83eeCAS |

[5]  (a) S. C. Thickett, C. Neto, A. T. Harris, Adv. Mater. 2011, 23, 3718.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovVCmtbo%3D&md5=1446cd424728fa53203b4cdcc19e9cd5CAS | 21766344PubMed |
      (b) M. Ghezzi, S. C. Thickett, A. M. Telford, C. D. Easton, L. Meagher, C. Neto, Langmuir 2014, 30, 11714.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. C. Thickett, J. Moses, J. R. Gamble, C. Neto, Soft Matter 2012, 8, 9996.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  S. Agarwal, M. Becker, F. Tewes, Polym. Int. 2005, 54, 1620.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlSms7bK&md5=47d4753652e3619e19b9367b6d8380c1CAS |

[7]  (a) L. Feng, S. Li, H. Li, J. Zhai, Y. Song, L. Jiang, D. Zhu, Angew. Chem. Int. Ed. 2002, 114, 1269.
         | Crossref | GoogleScholarGoogle Scholar |
         (b) J.-Y. Shiu, C.-W. Kuo, P. Chen, in Proceedings of SPIE – The International Society for Optical Engineering (Ed. A. R. Wilson) 2005, pp. 325–332 (SPIE – The International Society of Optical Engineering: Bellingham, WA).

[8]  (a) I. S. Bayer, A. J. Davis, A. Biswas, RSC Adv. 2014, 4, 264.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVeisrbF&md5=d3d803e6ce328184c4a876a74c9ef8f4CAS |
      (b) H. Y. Erbil, A. L. Demirel, Y. Avcı, O. Mert, Science 2003, 299, 1377.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. Jiang, L. Zhu, L. Zhu, B. Zhu, Y. Xu, Langmuir 2011, 27, 14180.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  R. P. Garrod, L. G. Harris, W. C. E. Schofield, J. McGettrick, L. J. Ward, D. O. H. Teare, J. P. S. Badyal, Langmuir 2007, 23, 689.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht12itbfP&md5=a71b07b7b44a9c1f8a4908e51a999b3aCAS | 17209621PubMed |

[10]  C. Dorrer, J. Rühe, Langmuir 2008, 24, 6154.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtVejsrc%3D&md5=be916c0f9af33b9941832989b386e9c7CAS | 18489186PubMed |

[11]  L. M. Han, R. B. Timmons, W. W. Lee, Y. Chen, Z. Hu, J. Appl. Phys. 1998, 84, 439.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjvVKhsrk%3D&md5=2d1827bb317d11b1766de38c58f2dab5CAS |

[12]     (a) C. C. Ibeh, Thermoplastic Materials: Properties, Manufacturing Methods, and Applications 2014 (CRC Press: Boca Raton, FL).
      (b) D. K. Owens, R. Wendt, J. Appl. Polym. Sci. 1969, 13, 1741.
         | Crossref | GoogleScholarGoogle Scholar |

[13]     (a) S. K. Papadopoulou, C. Michailof, I. Karapanagiotis, I. Zuburtikudis, C. Panayiotou, in American Institute of Chemical Engineers 2008 Annual Meeting (Ed. J. Koberstein) 2008, p. 722 (American Institute of Chemical Engineers: New York, NY).
      (b) E. Alyamac, M. D. Soucek, Prog. Org. Coat. 2011, 71, 213.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  G. Odian, Principles of Polymerization 2004 (Wiley Interscience: Hoboken, NJ).

[15]  J. A. Brydson, Plastics Materials 2013 (Elsevier Science: Amsterdam).

[16]  (a) J. M. Barrales-Rienda, J. I. G. De La Campa, J. G. Ramos, J. Macromol. Sci., Chem. 1977, 11, 267.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) M. Yoshihara, J.-I. Asakura, H. Takahashi, T. Maeshima, J. Macromol. Sci., Chem. 1983, 20, 123.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) A. A. Mohamed, F. H. Jebrael, M. Z. Elsabee, Macromolecules 1986, 19, 32.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) C. P. R. Nair, D. Mathew, K. N. Ninan, Eur. Polym. J. 1999, 35, 1829.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) F. Yilmaz, L. Cianga, Y. Guner, L. Topppare, Y. Yagci, Polymer 2004, 45, 5765.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) L. Lou, Y. Koike, Y. Okamoto, Polymer 2011, 52, 3560.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) A. Matsumoto, T. Kubota, T. Otsu, Macromolecules 1990, 23, 4508.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  (a) B. D. Dean, J. Appl. Polym. Sci. 1987, 33, 2259.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXkt1CjtLw%3D&md5=ed1954b3ef5b15260c793fba822bb847CAS |
      (b) Y. Yuan, A. Siegmann, M. Narkis, J. Bell, J. Appl. Polym. Sci. 1996, 61, 1049.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) A. Matsumoto, T. Kubota, T. Otsu, Macromolecules 1990, 23, 4508.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  J. Barrales‐Rienda, J. G. Ramos, M. S. Chaves, J. Polym. Sci. Part A: Polym. Chem. 1979, 17, 81.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXht1aisrY%3D&md5=50dffd52cb084e7b40126e7507a9d12fCAS |

[19]  Y. Fu, Y.-T. R. Lau, L.-T. Weng, K.-M. Ng, C.-M. Chan, J. Colloid Interface Sci. 2014, 431, 180.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlamtrrP&md5=0b75194363abe54f49c0915104f0f451CAS | 24999012PubMed |

[20]  (a) W. A. Pryor, T.-L. Huang, Macromolecules 1969, 2, 70.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXhtFGmuro%3D&md5=7940c54447b503449f01fe25d2c737feCAS |
      (b) N. ten Brummelhuis, M. Weck, ACS Macro Lett. 2012, 1, 1216.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) N. ten Brummelhuis, M. Weck, J. Polym. Sci. Part A: Polym. Chem. 2014, 52, 1555.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  C. Pugh, C. N. Tang, M. Paz-Pazos, O. Samtani, A. H. Dao, Macromolecules 2007, 40, 8178.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFCnu7jI&md5=d2e6470e3bc481599a49bb16b745e536CAS |

[22]  (a) J. Chiefari, Y. Chong, F. Ercole, J. Krstina, J. Jeffery, T. P. Le, R. T. Mayadunne, G. F. Meijs, C. L. Moad, G. Moad, Macromolecules 1998, 31, 5559.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvF2gs7k%3D&md5=269282b1cf091af153ef4ce21e1b9b71CAS |
      (b) G. Moad, E. Rizzardo, S. H. Thang, Aust. J. Chem. 2006, 59, 669.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) G. Moad, E. Rizzardo, S. H. Thang, Polymer 2008, 49, 1079.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  K. Matyjaszewski, N. V. Tsarevsky, J. Am. Chem. Soc. 2014, 136, 6513.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmslSrurY%3D&md5=900ee3e635f3d26143a1deb12dec1622CAS | 24758377PubMed |

[24]  J. Nicolas, Y. Guillaneuf, C. Lefay, D. Bertin, D. Gigmes, B. Charleux, Prog. Polym. Sci. 2013, 38, 63.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht12jt73E&md5=b34f3ebc375d237c8cdfb6af6086d85eCAS |

[25]  G.-Q. Chen, Z.-Q. Wu, J.-R. Wu, Z.-C. Li, F.-M. Li, Macromolecules 2000, 33, 232.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXotFKgur4%3D&md5=cbdb60948efa9ad6e0ba369a00559535CAS |

[26]  A. Li, J. Lu, J. Appl. Polym. Sci. 2009, 114, 2469.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVCgtbjP&md5=3bef34f4cd4cd388320ca72259689fc8CAS |

[27]  P. Yang, L. P. D. Ratcliffe, S. P. Armes, Macromolecules 2013, 46, 8545.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1Cgt77L&md5=202bae9dd2902108745a00193843e0afCAS |

[28]  M. Alger, Polymer Science Dictionary 1996 (Springer: Dordrecht).

[29]  (a) H. Adams, J.-L. Jimenez Blanco, G. Chessari, C. A. Hunter, C. M. R. Low, J. M. Sanderson, J. G. Vinter, Chem. – Eur. J. 2001, 7, 3494.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmsFKmu7s%3D&md5=836e8042b64c2055b52ebe02b4f3a00aCAS | 11560319PubMed |
      (b) H. Adams, J. L. Jimenez Blanco, G. Chessari, C. A. Hunter, C. M. Low, J. M. Sanderson, J. G. Vinter, Chem.– Eur. J. 2001, 7, 10.

[30]  M. P. Callahan, Z. Gengeliczki, N. Svadlenak, H. Valdes, P. Hobza, M. S. de Vries, Phys. Chem. Chem. Phys. 2008, 10, 2819.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlsVOnurw%3D&md5=4a898e9bbe091c306f3511779fa10f42CAS | 18464999PubMed |

[31]  P. C. Hiemenz, T. P. Lodge, Polymer Chemistry 2007 (CRC Press: Boca Raton, FL).

[32]  G. Liu, X. Li, L. Zhang, X. Qu, P. Liu, L. Yang, J. Gao, J. Appl. Polym. Sci. 2002, 83, 417.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXosVKmsrk%3D&md5=367a769e9de1a18dde808450be072a27CAS |

[33]  J. Rieger, J. Therm. Anal. 1996, 46, 965.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjtF2mtbc%3D&md5=f67e0190ae72b7a93d6ac18ddb0f6e70CAS |

[34]  P. Sivasamy, M. Meenakshisundaram, C. T. Vijayakumar, J. Anal. Appl. Pyrolysis 2003, 68–69, 51.

[35]  S. C. Siah, B. Hoex, A. G. Aberle, Thin Solid Films 2013, 545, 451.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1yrtrvI&md5=995b26bf077cf9deebb62d5418678464CAS |

[36]  (a) P. Müller-Buschbaum, J. S. Gutmann, M. Wolkenhauer, J. Kraus, M. Stamm, D. Smilgies, W. Petry, Macromolecules 2001, 34, 1369.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) K. E. Strawhecker, S. K. Kumar, J. F. Douglas, A. Karim, Macromolecules 2001, 34, 4669.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  T. Garel, L. Leibler, H. Orland, J. Phys. II 1994, 4, 2139.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXisFKitbg%3D&md5=2a556dc0dc9e9b104e99c710e2473f34CAS |

[38]  See the Appendix, entitled ‘Charts of 1H Chemical Shifts and Coupling Constants’, pp. 1131–1139 in: J. W. Emsley, J. Feeney, L. H. Sutcliffe, High-Resolution NMR Spectroscopy 1966 (Pergamon Press: Oxford).

[39]  C. Neto, K. Jacobs, R. Seemann, R. Blossey, J. Becker, G. Gruen, J. Phys. Condens. Matter 2003, 15, 3355.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksFensrY%3D&md5=e802999292991e24cf9d7a2470cf859eCAS |