Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
REVIEW

Molecular Electronics: History and Fundamentals

Santiago Marqués-González A B and Paul J. Low A C D
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.

B Department of Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan.

C School of Chemistry and Biochemistry, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.

D Corresponding author. Email: paul.low@uwa.edu.au

Australian Journal of Chemistry 69(3) 244-253 https://doi.org/10.1071/CH15634
Submitted: 9 October 2015  Accepted: 20 November 2015   Published: 7 January 2016

Abstract

The increasing difficulties of meeting ‘Moore’s Law’ rates of progress in conventional semiconductor electronics, coupled with the advent of methods capable of measuring the electronic properties of single molecules in a laboratory setting, have seen a surge of activity in the field of molecular electronics over the last decade. However, the concepts of molecular electronics are far from new, and the basic premise and ideas of molecular electronics have been shadowing those of solid-state semiconductor electronics since the middle of the 20th century. In this Primer Review, we introduce the topic of molecular electronics, drawing on some of the earliest expressions of the fundamental concepts, and summarizing key concepts to provide the interested reader with an entry to this fascinating field of science and emerging technology.


References

[1]  K. S. Kwok, J. C. Ellenbogen, Mater. Today 2002, 5, 28.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsVWqtL4%3D&md5=8bb2b76fb211a43f39e08bbc909c2aadCAS |

[2]  (a) F. Chen, N. J. Tao, Acc. Chem. Res. 2009, 42, 429.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXis1arsbY%3D&md5=376f3b73968e1fb088b95378550fe1fdCAS | 19253984PubMed |
      (b) R. M. Metzger, J. Mater. Chem. 2008, 18, 4364.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) R. K. Cavin, P. Lugli, V. V. Zhirnov, Proc. IEEE 2012, 100, 1720.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) A. Huang, IEEE Spectrum 2015, 52, 43.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) N. Collaert, A. Alian, H. Arimura, G. Boccardi, G. Eneman, J. Franco, T. Ivanov, D. Lin, R. Loo, C. Merckling, J. Mitard, M. A. Pourghaderi, R. Rooyackers, S. Sioncke, J. W. Sun, A. Vandooren, A. Veloso, A. Verhulst, N. Waldron, L. Witters, D. Zhou, K. Barla, A. V.-Y. Thean, Microelectron. Eng. 2015, 132, 218.
         | Crossref | GoogleScholarGoogle Scholar |

[4]     (a) I.-C. Khoo, I. Wiley, Liquid Crystals 2007 (Wiley-Interscience: Hoboken, NJ).
      (b) A. P. Kulkarni, C. J. Tonzola, A. Babel, S. A. Jenekhe, Chem. Mater. 2004, 16, 4556.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) H. Sasabe, J. Kido, Chem. Mater. 2011, 23, 621.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) C. Zhong, C. Duan, F. Huang, H. Wu, Y. Cao, Chem. Mater. 2011, 23, 326.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  H. Choi, C. C. M. Mody, Soc. Stud. Sci. 2009, 39, 11.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  A. von Hippel, Science 1956, 123, 315.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3czptFaqtQ%3D%3D&md5=51bdc6a8441dbfbdd30e1df41640ac38CAS | 17774519PubMed |

[7]  E. A. Sack, D. A. Lewis, IEEE Ann. Hist. Comput. 2012, 34, 74.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  G. E. Moore, Electronics 1965, 38(8), 1.

[9]  (a) ‘Plenty of room’ revisited. Nat. Nanotechnol. 2009, 4, 781. [Editorial].
         | ‘Plenty of room’ revisited.Crossref | GoogleScholarGoogle Scholar | 19966817PubMed |
      (b) R. P. Feynman, Caltech Eng. Sci. 1960, 23, 22.

[10]  (a) M. B. Robin, Inorg. Chem. 1962, 1, 337.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38Xkt1SrsL0%3D&md5=2f31e6f0243cde84efa1c910d8fc9f18CAS |
      (b) P. Day, Inorg. Chem. 1963, 2, 452.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) D. Culpin, P. Day, P. R. Edwards, R. J. P. Williams, Chem. Commun. 1965, 450.
      (d) C. Creutz, H. Taube, J. Am. Chem. Soc. 1969, 91, 3988.
         | Crossref | GoogleScholarGoogle Scholar |
         (e) G. C. Allen, N. S. Hush, in Progress in Inorganic Chemistry (Ed. F. A. Cotton) 1967, Vol. 8, pp. 357–389 (John Wiley & Sons, Inc.: Hoboken, NJ).
      (f) P. Day, N. S. Hush, R. J. H. Clark, Philos. Trans. R. Soc. A 2008, 366, 5.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  J.-P. Launay, Coord. Chem. Rev. 2013, 257, 1544.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVOmsLnE&md5=5f8b636371bf0d8e19a686db41013b33CAS |

[12]  B. Mann, H. Kuhn, J. Appl. Phys. 1971, 42, 4398.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXlsFGru70%3D&md5=b13061b143da3b1ae75bf7e7e27e4190CAS |

[13]  A. Aviram, M. A. Ratner, Chem. Phys. Lett. 1974, 29, 277.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXhs1Cjtbw%3D&md5=2ed4ea2b259e7f87640a1e46af6e6582CAS |

[14]  R. J. Hamers, J. Phys. Chem. 1996, 100, 13103.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xkt1amtLo%3D&md5=a979f2d2d6b8a42d8f9193309ec51c33CAS |

[15]  Y. Xia, J. A. Rogers, K. E. Paul, G. M. Whitesides, Chem. Rev. 1999, 99, 1823.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtVyisr8%3D&md5=189be54b98fabbbcba29e24b85532b36CAS | 11849012PubMed |

[16]  H. W. C. Postma, T. Teepen, Z. Yao, M. Grifoni, C. Dekker, Science 2001, 293, 76.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltFCnsLc%3D&md5=ce9310334fa30f1c6684787b89dc0d7bCAS |

[17]  C. P. Collier, J. O. Jeppesen, Y. Luo, J. Perkins, E. W. Wong, J. R. Heath, J. F. Stoddart, J. Am. Chem. Soc. 2001, 123, 12632.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXosVOitbk%3D&md5=0f745dfcafd96ba1ef78813226eb1d7eCAS | 11741428PubMed |

[18]  R. F. Service, Science 2001, 294, 2442.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XntVSg&md5=b7fc961ae78e919902ed4ce789cfbe81CAS | 11752536PubMed |

[19]  J. E. Green, J. W. Choi, A. Boukai, Y. Bunimovich, E. Johnston-Halperin, E. DeIonno, Y. Luo, B. A. Sheriff, K. Xu, Y. S. Shin, H.-R. Tseng, J. F. Stoddart, J. R. Heath, Nature 2007, 445, 414.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXos12nug%3D%3D&md5=5335dddeaf6862724df11a1d34d0ed20CAS | 17251976PubMed |

[20]  S. E. Thompson, S. Parthasarathy, Mater. Today 2006, 9, 20.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmtl2lt7c%3D&md5=e5028afd9e090437c2c0b0bc7f5b7cf4CAS |

[21]  F. Monnier, F. o. Turtaut, L. Duroure, M. Taillefer, Org. Lett. 2008, 10, 3203.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvF2hu70%3D&md5=3ad463cc6e6b32c115eb6ff77d62f5d8CAS | 18588308PubMed |

[22]  (a) L. Manchanda, M. D. Morris, M. L. Green, R. B. van Dover, F. Klemens, T. W. Sorsch, P. J. Silverman, G. Wilk, B. Busch, S. Aravamudhan, Microelectron. Eng. 2001, 59, 351.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnslWlu7c%3D&md5=e0818716f239c5d5026c09c567facc7cCAS |
      (b) H. Wong, H. Iwai, Microelectron. Eng. 2006, 83, 1867.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) R. L. McCreery, H. Yan, A. J. Bergren, Phys. Chem. Chem. Phys. 2013, 15, 1065.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  J. Luo, M. Liu, Q. Zhao, J. Zhao, Y. Zhang, L. Tan, H. Tang, Q. Xie, H. Li, S. Yao, Electrochim. Acta 2010, 56, 454.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVWgsLvJ&md5=3b9d9a7293b039ee4839282d2c5e6af0CAS |

[24]  (a) H. B. Akkerman, B. de Boer, J. Phys. Condens. Matter 2008, 20, 013001.
      (b) H. Haick, D. Cahen, Acc. Chem. Res. 2008, 41, 359.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  (a) R. L. McCreery, A. J. Bergren, Adv. Mater. 2009, 21, 4303.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVKhtrjM&md5=1acb5558e93f2c87106c891c02332b7fCAS | 26042937PubMed |
      (b) R. J. Nichols, W. Haiss, S. J. Higgins, E. Leary, S. Martin, D. Bethell, Phys. Chem. Chem. Phys. 2010, 12, 2801.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  (a) M. Mayor, C. von Hänisch, H. B. Weber, J. Reichert, D. Beckmann, Angew. Chem. Int. Ed. 2002, 41, 1183.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivVyktL8%3D&md5=d14ba8552dfde431907effd616148fe5CAS |
      (b) K. Liu, X. Wang, F. Wang, ACS Nano 2008, 2, 2315.
         | Crossref | GoogleScholarGoogle Scholar |

[27]  (a) S. Hong, R. Reifenberger, W. Tian, S. Datta, J. I. Henderson, C. P. Kubiak, Superlattices Microstruct. 2000, 28, 289.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXntlKrtb0%3D&md5=a79546c35ee96b6939ec994023995dc5CAS |
      (b) S.-H. Ke, H. U. Baranger, W. Yang, J. Am. Chem. Soc. 2004, 126, 15897.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) F. Chen, X. Li, J. Hihath, Z. Huang, N. Tao, J. Am. Chem. Soc. 2006, 128, 15874.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) Z. L. Cheng, R. Skouta, H. Vazquez, J. R. Widawsky, S. Schneebeli, W. Chen, M. S. Hybertsen, R. Breslow, L. Venkataraman, Nat. Nanotechnol. 2011, 6, 353.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) M. Frei, S. V. Aradhya, M. S. Hybertsen, L. Venkataraman, J. Am. Chem. Soc. 2012, 134, 4003.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) T. A. Su, J. R. Widawsky, H. Li, R. S. Klausen, J. L. Leighton, M. L. Steigerwald, L. Venkataraman, C. Nuckolls, J. Am. Chem. Soc. 2013, 135, 18331.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  (a) W. Haiss, C. Wang, I. Grace, A. S. Batsanov, D. J. Schiffrin, S. J. Higgins, M. R. Bryce, C. J. Lambert, R. J. Nichols, Nat. Mater. 2006, 5, 995.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Gku7bK&md5=fc229e4613a4b9f717e68b40abc502d2CAS | 17128259PubMed |
      (b) W. Haiss, C. Wang, R. Jitchati, I. Grace, S. Martín, A. S. Batsanov, S. J. Higgins, M. R. Bryce, C. J. Lambert, P. S. Jensen, R. J. Nichols, J. Phys. Condens. Matter 2008, 20, 374119.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  (a) Z. Li, B. Han, G. Meszaros, I. Pobelov, T. Wandlowski, A. Blaszczyk, M. Mayor, Faraday Discuss. 2006, 131, 121.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xps1Cq&md5=f3e9cddd8984354309e2e3f8a31846dfCAS | 16512368PubMed |
      (b) J. R. Quinn, F. W. Foss, L. Venkataraman, R. Breslow, J. Am. Chem. Soc. 2007, 129, 12376.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  J. G. Kushmerick, D. B. Holt, J. C. Yang, J. Naciri, M. H. Moore, R. Shashidhar, Phys. Rev. Lett. 2002, 89, 086802.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38vjsV2htA%3D%3D&md5=30f533ac4df441c08582ccd1f35f876dCAS | 12190491PubMed |

[31]  S. Rigaut, Dalton Trans. 2013, 15859.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs12mur%2FP&md5=62f7c0f89ac292a373cfc5fb54da4ae0CAS | 23851582PubMed |

[32]  J. M. Tour, Molecular Electronics: Commercial Insights, Chemistry, Devices, Architecture and Programming 2003 (World Scientific Publishing: Hackensack, NJ).

[33]  P. F. H. Schwab, M. D. Levin, J. Michl, Chem. Rev. 1999, 99, 1863.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktlKms78%3D&md5=5c047871911bdf6a6e6df941e3491f9aCAS |

[34]  K. Sonogashira, in Metal-Catalyzed Cross-Coupling Reactions (Eds F. Diederich, P. J. Stang) 1998, Ch. 5, pp. 203–229 (Wiley-VCH: Weinheim).

[35]  (a) M. A. Reed, J. Chen, A. M. Rawlett, D. W. Price, J. M. Tour, Appl. Phys. Lett. 2001, 78, 3735.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvF2mtbw%3D&md5=5b2a018998ae09eef191fda1d37746f2CAS |
      (b) F.-R. F. Fan, R. Y. Lai, J. Cornil, Y. Karzazi, J.-L. Brédas, L. Cai, L. Cheng, Y. Yao, D. W. Price, S. M. Dirk, J. M. Tour, A. J. Bard, J. Am. Chem. Soc. 2004, 126, 2568.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) X. Xiao, L. A. Nagahara, A. M. Rawlett, N. Tao, J. Am. Chem. Soc. 2005, 127, 9235.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) A. S. Blum, J. G. Kushmerick, D. P. Long, C. H. Patterson, J. C. Yang, J. C. Henderson, Y. Yao, J. M. Tour, R. Shashidhar, B. R. Ratna, Nat. Mater. 2005, 4, 167.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) Q. Lu, K. Liu, H. Zhang, Z. Du, X. Wang, F. Wang, ACS Nano 2009, 3, 3861.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  H. Hakkinen, Nat. Chem. 2012, 4, 443.
         | Crossref | GoogleScholarGoogle Scholar | 22614378PubMed |

[37]  (a) J. A. M. Sondag-Huethorst, C. Schonenberger, L. G. J. Fokkink, J. Phys. Chem. 1994, 98, 6826.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXks1KmtLk%3D&md5=5439d82fc4376a7907daf9bd7ee71cacCAS |
      (b) G. Rubio, N. Agraït, S. Vieira, Phys. Rev. Lett. 1996, 76, 2302.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) G. Rubio-Bollinger, S. R. Bahn, N. Agraït, K. W. Jacobsen, S. Vieira, Phys. Rev. Lett. 2001, 87, 026101.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) D. Krüger, H. Fuchs, R. Rousseau, D. Marx, M. Parrinello, Phys. Rev. Lett. 2002, 89, 186402.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) Z. Huang, F. Chen, P. A. Bennett, N. Tao, J. Am. Chem. Soc. 2007, 129, 13225.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  (a) Z. J. Donhauser, B. A. Mantooth, K. F. Kelly, L. A. Bumm, J. D. Monnell, J. J. Stapleton, D. W. Price, A. M. Rawlett, D. L. Allara, J. M. Tour, P. S. Weiss, Science 2001, 292, 2303.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkslShsb4%3D&md5=7b1996921ff06c012cbbb4394a856049CAS | 11423655PubMed |
      (b) G. K. Ramachandran, T. J. Hopson, A. M. Rawlett, L. A. Nagahara, A. Primak, S. M. Lindsay, Science 2003, 300, 1413.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. Yasuda, S. Yoshida, J. Sasaki, Y. Okutsu, T. Nakamura, A. Taninaka, O. Takeuchi, H. Shigekawa, J. Am. Chem. Soc. 2006, 128, 7746.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  (a) B. Xu, N. J. Tao, Science 2003, 301, 1221.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmslShs7w%3D&md5=d5581482a3a6fe40366381b062bf75d6CAS | 12947193PubMed |
      (b) C. Wang, A. S. Batsanov, M. R. Bryce, S. Martín, R. J. Nichols, S. J. Higgins, V. M. García-Suárez, C. J. Lambert, J. Am. Chem. Soc. 2009, 131, 15647.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Y. Ie, T. Hirose, H. Nakamura, M. Kiguchi, N. Takagi, M. Kawai, Y. Aso, J. Am. Chem. Soc. 2011, 133, 3014.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) G. Sedghi, V. M. Garcia-Suarez, L. J. Esdaile, H. L. Anderson, C. J. Lambert, S. Martin, D. Bethell, S. J. Higgins, M. Elliott, N. Bennett, J. E. Macdonald, R. J. Nichols, Nat. Nanotechnol. 2011, 6, 517.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) X. Zhao, C. Huang, M. Gulcur, A. S. Batsanov, M. Baghernejad, W. Hong, M. R. Bryce, T. Wandlowski, Chem. Mater. 2013, 25, 4340.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) L. Venkataraman, J. E. Klare, I. W. Tam, C. Nuckolls, M. S. Hybertsen, M. L. Steigerwald, Nano Lett. 2006, 6, 458.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) L. Venkataraman, Y. S. Park, A. C. Whalley, C. Nuckolls, M. S. Hybertsen, M. L. Steigerwald, Nano Lett. 2007, 7, 502.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) L. Patrone, S. Palacin, J. Charlier, F. Armand, J. P. Bourgoin, H. Tang, S. Gauthier, Phys. Rev. Lett. 2003, 91, 096802.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) P. Moreno-García, M. Gulcur, D. Z. Manrique, T. Pope, W. Hong, V. Kaliginedi, C. Huang, A. S. Batsanov, M. R. Bryce, C. Lambert, T. Wandlowski, J. Am. Chem. Soc. 2013, 135, 12228.
         | Crossref | GoogleScholarGoogle Scholar |
      (j) S. Martin, W. Haiss, S. J. Higgins, R. J. Nichols, Nano Lett. 2010, 10, 2019.
         | Crossref | GoogleScholarGoogle Scholar |
      (k) M. Kiguchi, S. Miura, K. Hara, M. Sawamura, K. Murakoshi, Appl. Phys. Lett. 2006, 89, 213104.
         | Crossref | GoogleScholarGoogle Scholar |
      (l) J. Chen, L. C. Calvet, M. A. Reed, D. W. Carr, D. S. Grubisha, D. W. Bennett, Chem. Phys. Lett. 1999, 313, 741.
         | Crossref | GoogleScholarGoogle Scholar |
      (m) J. M. Beebe, V. B. Engelkes, L. L. Miller, C. D. Frisbie, J. Am. Chem. Soc. 2002, 124, 11268.
         | Crossref | GoogleScholarGoogle Scholar |
      (n) M.-D. Fu, I. W. P. Chen, H.-C. Lu, C.-T. Kuo, W.-H. Tseng, C.-h. Chen, J. Phys. Chem. C 2007, 111, 11450.
         | Crossref | GoogleScholarGoogle Scholar |
      (o) A. Fukazawa, M. Kiguchi, S. Tange, Y. Ichihashi, Q. Zhao, T. Takahashi, T. Konishi, K. Murakoshi, Y. Tsuji, A. Staykov, K. Yoshizawa, S. Yamaguchi, Chem. Lett. 2011, 40, 174.
         | Crossref | GoogleScholarGoogle Scholar |
      (p) G. Pera, S. Martín, L. M. Ballesteros, A. J. Hope, P. J. Low, R. J. Nichols, P. Cea, Chem. – Eur. J. 2010, 16, 13398.
         | Crossref | GoogleScholarGoogle Scholar |
      (q) S. Marques-Gonzalez, D. S. Yufit, J. A. K. Howard, S. Martin, H. M. Osorio, V. M. Garcia-Suarez, R. J. Nichols, S. J. Higgins, P. Cea, P. J. Low, Dalton Trans. 2013, 338.
         | Crossref | GoogleScholarGoogle Scholar |
      (r) Y. Komoto, S. Fujii, K. Hara, M. Kiguchi, J. Phys. Chem. C 2013, 117, 24277.
         | Crossref | GoogleScholarGoogle Scholar |
      (s) W. Hong, H. Li, S.-X. Liu, Y. Fu, J. Li, V. Kaliginedi, S. Decurtins, T. Wandlowski, J. Am. Chem. Soc. 2012, 134, 19425.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  M. J. Huang, L. Y. Hsu, M. D. Fu, S. T. Chuang, F. W. Tien, C. H. Chen, J. Am. Chem. Soc. 2014, 136, 1832.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFKnsA%3D%3D&md5=43ab0a62eb8d372cf0abec373b9331a7CAS | 24437396PubMed |

[41]  X. Crispin, V. Geskin, A. Crispin, J. Cornil, R. Lazzaroni, W. R. Salaneck, J.-L. Brédas, J. Am. Chem. Soc. 2002, 124, 8131.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XksFOrs7g%3D&md5=dc14490283a7d625b7a8783875403ed7CAS | 12095359PubMed |

[42]  N. J. Tao, Phys. Rev. Lett. 1996, 76, 4066.
         | 1:CAS:528:DyaK28XjtVKjurg%3D&md5=5e344fca7467b12c328ff92b00e2ccdfCAS | 10061183PubMed |

[43]  G. Wang, T. W. Kim, T. Lee, W. Wang, M. A. Reed, in Comprehensive Nanoscience and Technology (Eds D. L. Andrews, G. D. Scholes, G. P. Wiederrecht) 2011, Ch. 4.16, pp. 463–487 (Academic Press: Amsterdam).

[44]  (a) A. Nitzan, Annu. Rev. Phys. Chem. 2001, 52, 681.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXksFKlsLk%3D&md5=e5b00322dfdc91b4310c9400d58e0e9dCAS | 11326078PubMed |
      (b) A. Nitzan, M. A. Ratner, Science 2003, 300, 1384.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) L. Malysheva, A. Onipko, Phys. Status Solidi B 2007, 244, 4244.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) N. A. Zimbovskaya, M. R. Pederson, Phys. Rep. 2011, 509, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[45]  (a) D. M. Adams, L. Brus, C. E. D. Chidsey, S. Creager, C. Creutz, C. R. Kagan, P. V. Kamat, M. Lieberman, S. Lindsay, R. A. Marcus, R. M. Metzger, M. E. Michel-Beyerle, J. R. Miller, M. D. Newton, D. R. Rolison, O. Sankey, K. S. Schanze, J. Yardley, X. Zhu, J. Phys. Chem. B 2003, 107, 6668.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvVaisL4%3D&md5=a21f262ae079420b3634fa211523e527CAS |
      (b) C. Chiorboli, M. T. Indelli, F. Scandola, Top. Curr. Chem. 2005, 257, 63.
         | Crossref | GoogleScholarGoogle Scholar |

[46]  R. Yamada, H. Kumazawa, T. Noutoshi, S. Tanaka, H. Tada, Nano Lett. 2008, 8, 1237.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXislemtrc%3D&md5=58e269eef5d89e850496699765306bc7CAS | 18311936PubMed |

[47]  V. Kaliginedi, P. Moreno-García, H. Valkenier, W. Hong, V. M. García-Suárez, P. Buiter, J. L. H. Otten, J. C. Hummelen, C. J. Lambert, T. Wandlowski, J. Am. Chem. Soc. 2012, 134, 5262.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisFCksLs%3D&md5=0b11a8a760c7d597c9090b85b1ab0459CAS | 22352944PubMed |

[48]  (a) D. J. Wold, R. Haag, M. A. Rampi, C. D. Frisbie, J. Phys. Chem. B 2002, 106, 2813.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhsVegtrk%3D&md5=12c945430c22744d0a44a0d44e3595ceCAS |
      (b) T. Ishida, W. Mizutani, Y. Aya, H. Ogiso, S. Sasaki, H. Tokumoto, J. Phys. Chem. B 2002, 106, 5886.
         | Crossref | GoogleScholarGoogle Scholar |

[49]  (a) H. Liu, N. Wang, J. Zhao, Y. Guo, X. Yin, F. Y. C. Boey, H. Zhang, ChemPhysChem 2008, 9, 1416.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptVaqu7Y%3D&md5=1f85e187b4a10e5f7fd0bb2bea00c58cCAS | 18512822PubMed |
      (b) M. D. Newton, J. F. Smalley, Phys. Chem. Chem. Phys. 2007, 9, 555.
         | Crossref | GoogleScholarGoogle Scholar |

[50]  (a) J. N. Onuchic, D. N. Beratan, J. R. Winkler, H. B. Gray, Annu. Rev. Biophys. Biomol. Struct. 1992, 21, 349.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XltVKnsbk%3D&md5=fb07c71226171f57d7eab69676ba42cfCAS | 1326356PubMed |
      (b) O. S. Wenger, Acc. Chem. Res. 2011, 44, 25.
         | Crossref | GoogleScholarGoogle Scholar |

[51]  C. Joachim, M. A. Ratner, Nanotechnology 2004, 15, 1065.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvFKjt7o%3D&md5=21c2c84353a6a97945f9d0e98051fcf2CAS |

[52]  W. B. Davis, W. A. Svec, M. A. Ratner, M. R. Wasielewski, Nature 1998, 396, 554.
         | Crossref | GoogleScholarGoogle Scholar |

[53]  S. Ho Choi, B. Kim, C. D. Frisbie, Science 2008, 320, 1482.
         | Crossref | GoogleScholarGoogle Scholar | 18556556PubMed |

[54]  (a) L. Luo, S. H. Choi, C. D. Frisbie, Chem. Mater. 2011, 23, 631.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtleiur3I&md5=05f89e810acb178a1f52d57acf849540CAS |
      (b) E. Wierzbinski, R. Venkatramani, K. L. Davis, S. Bezer, J. Kong, Y. Xing, E. Borguet, C. Achim, D. N. Beratan, D. H. Waldeck, ACS Nano 2013, 7, 5391.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) N. Renaud, Y. A. Berlin, F. D. Lewis, M. A. Ratner, J. Am. Chem. Soc. 2013, 135, 3953.
         | Crossref | GoogleScholarGoogle Scholar |

[55]  (a) A. Nitzan, J. Phys. Chem. A 2001, 105, 2677.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtlKhtbY%3D&md5=d5efa9b7dda3a365bb619f24df48f61dCAS |
      (b) Y. A. Berlin, M. A. Ratner, Radiat. Phys. Chem. 2005, 74, 124.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. C. Traub, B. S. Brunschwig, N. S. Lewis, J. Phys. Chem. B 2007, 111, 6676.
         | Crossref | GoogleScholarGoogle Scholar |

[56]  J. P. Bergfield, M. A. Ratner, Phys. Status Solidi B 2013, 250, 2249.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1Crt7fF&md5=0fa7a2248fbb6076c23751529da910bbCAS |

[57]  A. Nitzan, Isr. J. Chem. 2002, 42, 163.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvFChurc%3D&md5=fad97dd7fe186fc1b42fd74318fc750bCAS |

[58]  V. V. Zhirnov, R. K. Cavin, Nat. Mater. 2006, 5, 11.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlsVCl&md5=dd454a537a0869e6509171ed8fc21d9fCAS | 16389281PubMed |

[59]  J. R. Heath, M. A. Ratner, Phys. Today 2003, 56, 43.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkt1Sjur8%3D&md5=158af3586a00989911bfedde34095df9CAS |