Kinetic Studies of Gold Recovery from Diluted Chloride Aqueous Solutions Using Activated Carbon Organosorb 10 CO
Marek Wojnicki A E , Ewa Rudnik A , Magdalena Luty-Błocho A , Robert P. Socha B , Zbigniew Pędzich C , Krzysztof Fitzner A and Krzysztof Mech DA AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Ave. Mickiewicza. 30, 30-059 Krakow, Poland.
B Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland.
C AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Ave. Mickiewicza 30, 30-059 Krakow, Poland.
D AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Ave. Mickiewicza 30, 30-059 Krakow, Poland
E Corresponding author. Email: marekw@agh.edu.pl
Australian Journal of Chemistry 69(3) 254-261 https://doi.org/10.1071/CH15275
Submitted: 6 May 2015 Accepted: 13 July 2015 Published: 14 August 2015
Abstract
The kinetic studies of gold(iii) chloride complex ions recovery from acidic solution using activated carbon (AC) were carried out using spectrophotometry. AC samples were characterized in terms of surface area, porosity, and zeta potential. The surface functional groups were also identified. It was found that adsorption of AuCl4– onto AC was followed by reduction of the ions to the metallic form. The process obeyed the first order reaction model, but the reaction was controlled by diffusion. Arrhenius and Eyring–Polanyi equations were used for determination of the activation parameters. Distribution of gold across the AC pellets was also determined and discussed according to the porous material theory.
References
[1] M. Moyer, C. Storrs, Sci. Am. 2010, 303, 74.| Crossref | GoogleScholarGoogle Scholar | 20812483PubMed |
[2] M. Radetzki, Resour. Policy 1989, 15, 194.
| Crossref | GoogleScholarGoogle Scholar |
[3] L. E. Macaskie, I. P. Mikheenko, P. Yong, K. Deplanche, A. J. Murray, M. Paterson-Beedle, V. S. Coker, C. I. Pearce, R. A. D. Pattrick, D. Vaughan, G. Van Der Laan, J. R. Lloyd, Adv. Mater. Res. (Durnten–Zurich, Switz.) 2009, 71–73, 541.
| Crossref | GoogleScholarGoogle Scholar |
[4] P. Gramatyka, R. Nowosielski, P. Sakiewicz, J. Achiev. Mater. Manuf. Eng. 2007, 20, 535.
[5] J. R. Dodson, A. J. Hunt, H. L. Parker, Y. Yang, J. H. Clark, Chem. Eng. Process. 2012, 51, 69.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnslarsw%3D%3D&md5=10db3843f09db67eec02f37e848e7694CAS |
[6] V. Bhat, P. Rao, Y. Patil, Procedia Soc. Behav. Sci. 2012, 37, 397.
| Crossref | GoogleScholarGoogle Scholar |
[7] S. Syed, Hydrometallurgy 2012, 115–116, 30.
| Crossref | GoogleScholarGoogle Scholar |
[8] A. Tuncuk, V. Stazi, A. Akcil, E. Y. Yazici, H. Deveci, Miner. Eng. 2012, 25, 28.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsV2hu7nO&md5=fc07e7b3c02bec56c9c3102c73a8053eCAS |
[9] B. Butler, J. Centurier-Harris, A. E. Lewis, Miner. Eng. 2001, 14, 905.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsVGjs7w%3D&md5=f170d7ea581df03fc4a1310dc41da942CAS |
[10] A. T. Yordanov, J. T. Mague, D. Max Roundhill, Inorg. Chim. Acta 1995, 240, 441.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhtVChurc%3D&md5=a2d48b4f9836227096c29789c00fd3b9CAS |
[11] C. Nowottny, W. Halwachs, K. Schügerl, Sep. Purif. Technol. 1997, 12, 135.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtlWhsA%3D%3D&md5=54dcc36373becc2cfbc0d3d67c6da81cCAS |
[12] C. M. McInnes, G. J. Sparrow, J. T. Woodcock, Hydrometallurgy 1994, 35, 141.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXislKitLw%3D&md5=b23a033bf6a0bff8cfd00a899ffa0e34CAS |
[13] M. K. Jha, D. Gupta, J.-C. Lee, V. Kumar, J. Jeong, Hydrometallurgy 2014, 142, 60.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1Kit78%3D&md5=4650bd7e958fdfaae4832fab438b3167CAS |
[14] A. Cieszynska, M. Wisniewski, Sep. Purif. Technol. 2011, 80, 385.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovFOqs7k%3D&md5=d87fc1dfa2fe1182f87902b762a06c82CAS |
[15] S. V. Bandekar, P. M. Dhadke, Sep. Purif. Technol. 1998, 13, 129.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXislajuro%3D&md5=b370f541b170cd41ba978c435f340aebCAS |
[16] S. Wu, G. Gu, J. Univ. Sci. Technol. Beijing 2007, 14, 107.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlvFCmsb8%3D&md5=ec530425c3b62e6cc0a8aba6e27e4d69CAS |
[17] M. V. Rane, V. Venugopal, Hydrometallurgy 2006, 84, 54.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptVSntb0%3D&md5=497707958e609d3a1ffdb7ba4c6ce310CAS |
[18] B. Gupta, I. Singh, Hydrometallurgy 2013, 134–135, 11.
| Crossref | GoogleScholarGoogle Scholar |
[19] T. Biver, C. Paoletti, F. Secco, M. Venturini, Colloids Surf., A 2014, 441, 466.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFKgsLvN&md5=bf806598723f2378f3b6bd9c4e76391dCAS |
[20] G. Kyriakakis, in Developments in Mineral Processing, Advances in Gold Ore Processing (Eds D. A. Mike, B. A. Wills) 2005, pp. 897–917 (Elsevier: Amsterdam).
[21] H. Zhang, C. A. Jeffery, M. I. Jeffrey, Hydrometallurgy 2012, 125–126, 69.
| Crossref | GoogleScholarGoogle Scholar |
[22] H. Zhang, D. B. Dreisinger, Hydrometallurgy 2004, 72, 225.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhs1Cqsbk%3D&md5=a002c16db8713e95ade4d78d03a982b8CAS |
[23] P. A. Riveros, W. C. Cooper, in Proceedings of the Metallurgical Society of the Canadian Institute of Mining and Metallurgy (Ed. R. S. S. M. W. W. McDonald) 1987, pp. 379–393 (Pergamon: Oxford).
[24] Y. Nakahiro, U. Horio, M. Niinae, E. Kusaka, T. Wakamatsu, Miner. Eng. 1992, 5, 1389.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XmtFKktrc%3D&md5=3f7d23b29cf4eb4f30f45444f5ae8555CAS |
[25] C. P. Gomes, M. F. Almeida, J. M. Loureiro, Sep. Purif. Technol. 2001, 24, 35.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtFaqsLg%3D&md5=be56422a0c67da4f04488960bb35daa5CAS |
[26] D. Bachiller, M. Torre, M. Rendueles, M. Díaz, Miner. Eng. 2004, 17, 767.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkt1Wktrw%3D&md5=ed65f3a6d9860014bcd34fe8682787fbCAS |
[27] P. Navarro, R. Alvarez, C. Vargas, F. J. Alguacil, Miner. Eng. 2004, 17, 825.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkt1Wkt7w%3D&md5=834509e28a1a056fe3a894ca8f263d16CAS |
[28] Y. J. Hsu, T. Tran, Miner. Eng. 1996, 9, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XktF2rsQ%3D%3D&md5=fc79d1b1fd80397d3f90da2d301f3f00CAS |
[29] S. Aktas, Hydrometallurgy 2011, 106, 71.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1SrsLs%3D&md5=d9bb85991cbb0e738a0ed64583b1176dCAS |
[30] A. D. Dwivedi, S. P. Dubey, S. Hokkanen, R. N. Fallah, M. Sillanpää, Chem. Eng. J. 2014, 255, 97.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVeitLbI&md5=dc5ad741573ef404be08e296adb8f6a6CAS |
[31] M. R. Awual, M. A. Khaleque, M. Ferdows, A. M. S. Chowdhury, T. Yaita, Microchem. J. 2013, 110, 591.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1agtb3M&md5=9ec6d4f2784d8d7ab0bd4b39aef83cf6CAS |
[32] Y. E. Golodkov, V. V. Elshin, V. I. Dudarev, L. M. Oznobikhin, Russ. J. Appl. Chem. 2001, 74, 21.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltVWgsLw%3D&md5=a259a2d44197816cf976189b01376f01CAS |
[33] L. D. Ageeva, N. A. Kolpakova, T. V. Kovyrkina, N. P. Potsyapun, A. S. Buinovskii, J. Anal. Chem. 2001, 56, 137.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXitVCls7g%3D&md5=bf7426ebd0518fd8cba41e6f6e08ee48CAS |
[34] C. A. Fleming, M. J. Nicol, J. South. Afr. Inst. Min. Metall. 1984, 84, 85.
| 1:CAS:528:DyaL2cXlslGhsb0%3D&md5=35755a8883c203c11ffdafc6af73d04eCAS |
[35] K. Pacławski, M. Wojnicki, Arch. Metall. Mater. 2009, 54, 853.
[36] K. S. W. Sing, in Adsorption by Powders and Porous Solids (second edition) (Ed. F. R. R. S. W. S. L. Maurin) 2014, pp. 321–391 (Academic Press: Oxford).
[37] H.-P. Boehm, in Adsorption by Carbons (Eds E. J. Bottani, J. M. D. Tascón) 2008, Ch. 13, pp. 301–327 (Elsevier: Amsterdam).
[38] S.-K. Pang, K.-C. Yung, Chem. Eng. Sci. 2014, 107, 58.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1yls7Y%3D&md5=cc6e3346b14e45c715f265297dfad1e9CAS |
[39] B. Pesic, V. C. Storhok, Metall. Trans. B 1992, 23, 557.
| Crossref | GoogleScholarGoogle Scholar |
[40] M. Wojnicki, E. Rudnik, M. Luty-Błocho, K. Pacławski, K. Fitzner, Hydrometallurgy 2012, 127–128, 45.
| Crossref | GoogleScholarGoogle Scholar |
[41] K. László, K. Josepovits, E. Tombácz, Anal. Sci. 2001, 17, i1741.
| Crossref | GoogleScholarGoogle Scholar |
[42] A. Contescu, C. Contescu, K. Putyera, J. A. Schwarz, Carbon 1997, 35, 83.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhtFCms7w%3D&md5=67261ede17fd2768790983e68ff9d164CAS |
[43] H.-L. Chiang, C. P. Huang, P. C. Chiang, Chemosphere 2002, 47, 257.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitFWis7c%3D&md5=3f21aa3dd8ee3060dc10e2d2f8dfb257CAS | 11996146PubMed |
[44] M. Watanabe, T. Akahoshi, Y. Tabata, D. Nakayama, J. Am. Chem. Soc. 1998, 120, 5577.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjtlWltr4%3D&md5=702e48a8ec09acc3abe4b3db0e670b08CAS |
[45] M. Wojnicki, K. Pacławski, R. P. Socha, K. Fitzner, Trans. Nonferrous Met. Soc. China 2013, 23, 1147.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnvVOitrs%3D&md5=b29653a7b584b3a2bd5a8172aaf78866CAS |
[46] R. C. Bansal, M. Goyal, A. Świątkowski, L. Dąbek, T. Siemieniewska, Adsorpcja na węglu aktywnym 2009 (WNT: Warszawa).
[47] N. Zhang, L.-Y. Wang, H. Liu, Q.-K. Cai, Surf. Interface Anal. 2008, 40, 1190.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVegtb7L&md5=d46cd023a1b12f9cfca2ee000d41b8daCAS |
[48] R. Schmidt, F. Barbagelata, H. Rivera, J. Valencia, S. A. Moya, Int. J. Miner. Process. 1988, 23, 253.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXkvFKntLg%3D&md5=ab471e3c2096f7093b68349b9ca761e7CAS |
[49] D. A. Bulushev, I. Yuranov, E. I. Suvorova, P. A. Buffat, L. Kiwi-Minsker, J. Catal. 2004, 224, 8.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsVejt78%3D&md5=c428e2228dbb796e0479f68705c8573bCAS |
[50] M. E. Davis, R. J. Davis, Fundamentals of Chemical Reaction Engineering 2003 (McGraw-Hill: New York).
[51] M. Luty-Błocho, K. Pacławski, M. Wojnicki, K. Fitzner, Inorg. Chim. Acta 2013, 395, 189.
| Crossref | GoogleScholarGoogle Scholar |
[52] B. Streszewski, W. Jaworski, K. Szaciłowski, K. Pacławski, Int. J. Chem. Kinet. 2014, 46, 328.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjtVKjsL0%3D&md5=2a8122775f1e3aaa74c377fed3c9083aCAS |
[53] K. Pacławski, K. Fitzner, Metall. Mater. Trans. B 2004, 35, 1071.
| Crossref | GoogleScholarGoogle Scholar |
[54] S. Aktas, M. H. Morcali, Int. J. Miner. Process. 2011, 101, 63.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlGktbjF&md5=b71c9925a57023b6cbe0ef8b764a512eCAS |
[55] H. E. Van Dam, H. Van Bekkum, J. Catal. 1991, 131, 335.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXls1Ontrk%3D&md5=aead4bf544e893858001b8e20236d6beCAS |