Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Exploring the Catalytic Reactivity of Nickel Phosphine–Phosphite Complexes

Sven S. Kampmann A , Nikki Y. T. Man A , Allan J. McKinley A , George A. Koutsantonis A and Scott G. Stewart A B
+ Author Affiliations
- Author Affiliations

A School of Chemistry and Biochemistry, The University of Western Australia (M310), 35 Stirling Highway, Crawley, WA 6009, Australia.

B Corresponding author. Email: scott.stewart@uwa.edu.au

Australian Journal of Chemistry 68(12) 1842-1853 https://doi.org/10.1071/CH15459
Submitted: 31 July 2015  Accepted: 14 September 2015   Published: 14 October 2015

Abstract

In this study, we present an investigation into various nickel phosphite and phosphite–phosphine complexes for use in the Mizoroki–Heck and Suzuki–Miyaura cross-coupling reactions and the ammonia arylation reaction. In these coupling reactions, it was discovered that the Ni[P(OEt)3]4, (dppf)Ni[P(OPh)3]2, and (binap)Ni[P(OPh)3]2 catalysts were the most effective. In addition, an optimisation process for these catalytic systems as well as functional group compatibility are discussed.


References

[1]  C. A. Tolman, J. Am. Chem. Soc. 1970, 92, 2956.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXktVOru7o%3D&md5=6a6a453be7e8aee22bcc4bb09022d65dCAS |

[2]  L. W. Gosser, C. A. Tolman, Inorg. Chem. 1970, 9, 2350.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXltFGqsr4%3D&md5=e7a54d26ed68ba35d94cca390f449202CAS |

[3]  C. A. Tolman, W. C. Seidel, J. D. Druliner, P. J. Domaille, Organometallics 1984, 3, 33.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXltVOlsQ%3D%3D&md5=a662641b4f184b88a62f577c57d53a00CAS |

[4]  S. Arai, Y. Amako, X. Yang, A. Nishida, Angew. Chem. Int. Ed. 2013, 52, 8147.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpvVCisbw%3D&md5=bf1528d2d2a1f58b4cdbc1a6dc365a27CAS |

[5]  K. A. Kreutzer, W. Tam, U.S. Patent 5512696 A 2003.

[6]  M. J. Baker, K. N. Harrison, A. G. Orpen, P. G. Pringle, G. Shaw, J. Chem. Soc. Chem. Commun. 1991, 803.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXlslegsL0%3D&md5=331a8fd95a7ef52d87bed210a27e6cfeCAS |

[7]  J. Wilting, M. Janssen, C. Müller, M. Lutz, A. L. Spek, D. Vogt, Adv. Synth. Catal. 2007, 349, 350.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitlSqtb4%3D&md5=4c2a7fc9fa47f43885377f2eb46f080dCAS |

[8]  A. L. Casalnuovo, T. V. RajanBabu, T. A. Ayers, T. H. Warren, J. Am. Chem. Soc. 1994, 116, 9869.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhtlSlsrg%3D&md5=2d28aa37172ad0422cf243da3d657cd8CAS |

[9]  A. Falk, A.-L. Göderz, H.-G. Schmalz, Angew. Chem. Int. Ed. 2013, 52, 1576.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVyhsrzF&md5=c6e8965e19ed6b75e014a142737eaa46CAS |

[10]  M. A. Bohn, A. Schmidt, G. Hilt, M. Dindaroğlu, H.-G. Schmalz, Angew. Chem. Int. Ed. 2011, 50, 9689.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFSlt7fO&md5=8948ef41d76c177420e376c1f6822ab6CAS |

[11]  M. Shirakura, M. Suginome, Angew. Chem. 2010, 122, 3915.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  S. Iyer, C. Ramesh, A. Ramani, Tetrahedron Lett. 1997, 38, 8533.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnslOis7s%3D&md5=f3a470bc9c041aa0628a3f585c4a4b51CAS |

[13]  Y. Yatsumonji, Y. Ishida, A. Tsubouchi, T. Takeda, Org. Lett. 2007, 9, 4603.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtV2msLjM&md5=e7289ef5e8cf1d1a89c60be02087ea28CAS | 17902687PubMed |

[14]  J. Ju, M. Jeong, J. Moon, H. M. Jung, S. Lee, Org. Lett. 2007, 9, 4615.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFWgurvL&md5=77194e4212770d4cb4520c3c2e9ed9dcCAS | 17915887PubMed |

[15]  S. S. Kampmann, A. N. Sobolev, G. A. Koutsantonis, S. G. Stewart, Adv. Synth. Catal. 2014, 356, 1967.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXos1CjsLw%3D&md5=ed1888eb04d17f4fe915d70c58a081cbCAS |

[16]  S. S. Kampmann, B. W. Skelton, D. A. Wild, G. A. Koutsantonis, S. G. Stewart, Acta Crystallogr. Sect. C: Struct. Chem. 2015, 71, 188.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXltlCmsro%3D&md5=1d1e60bac5e59e7a71fb44ebc33da011CAS |

[17]  S. S. Kampmann, B. W. Skelton, D. A. Wild, G. A. Koutsantonis, S. G. Stewart, Eur. J. Org. Chem. 2015, 5995.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVOmu7%2FP&md5=12f6e8af13490485d45474ed8f49bd69CAS |

[18]  S. Z. Tasker, E. A. Standley, T. F. Jamison, Nature 2014, 509, 299.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotVyqurs%3D&md5=47c180a1fd7ecaf08e819cab984d3b1aCAS | 24828188PubMed |

[19]  T. M. Gøgsig, J. Kleimark, S. O. Nilsson Lill, S. Korsager, A. T. Lindhardt, P.-O. Norrby, T. Skrydstrup, J. Am. Chem. Soc. 2012, 134, 443.
         | Crossref | GoogleScholarGoogle Scholar | 22126421PubMed |

[20]  Z.-X. Wang, Z.-Y. Chai, Eur. J. Inorg. Chem. 2007, 4492.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  K. Inamoto, J.-i. Kuroda, K. Hiroya, Y. Noda, M. Watanabe, T. Sakamoto, Organometallics 2006, 25, 3095.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktVSlsb8%3D&md5=45bb80e70f5668971b07d2313839fda8CAS |

[22]  A. R. Ehle, Q. Zhou, M. P. Watson, Org. Lett. 2012, 14, 1202.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitlGjsb8%3D&md5=d79f69179e25605aaadaebd272b1ebf5CAS | 22335199PubMed |

[23]  P.-S. Lin, M. Jeganmohan, C.-H. Cheng, Chem. Asian J. 2007, 2, 1409.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlemsrzF&md5=6cda4b2fcefc272cb77aaec190594b62CAS | 17849401PubMed |

[24]  J. J. Levison, S. D. Robinson, J. Chem. Soc. A 1970, 96.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXltVCnsA%3D%3D&md5=4a08944d8dfcaef8b4a1502c03333ea2CAS |

[25]  M.-N. Birkholz, Z. Freixa, P. W. N. M. van Leeuwen, Chem. Soc. Rev. 2009, 38, 1099.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsFaju7Y%3D&md5=f0ab365667dc888a69fb31d3497907c9CAS | 19421583PubMed |

[26]  I. Kazmierski, C. Gosmini, J.-M. Paris, J. Périchon, Synlett 2006, 881.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltlGis7k%3D&md5=e039325ee7d30db421bde68e6dbd79f5CAS |

[27]  L. J. Goossen, C. Linder, N. Rodríguez, P. P. Lange, Chem. – Eur. J. 2009, 15, 9336.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGlu7jP&md5=3b0cad8b5e54172f19b2b57f112c0169CAS | 19718720PubMed |

[28]  Q. Shen, J. F. Hartwig, J. Am. Chem. Soc. 2006, 128, 10028.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvFaqurw%3D&md5=daf818f06649038411ec740a25dc5ce0CAS | 16881628PubMed |

[29]  F. Lang, D. Zewge, I. N. Houpis, R. P. Volante, Tetrahedron Lett. 2001, 42, 3251.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXivFaktbY%3D&md5=35df373121db553cadaa9791502f8c2fCAS |

[30]  J. Kim, S. Chang, Chem. Commun. 2008, 3052.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvFCht7k%3D&md5=1b386465cb94959c9c77609cf48fea5aCAS |

[31]  D. Wang, Q. Cai, K. Ding, Adv. Synth. Catal. 2009, 351, 1722.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVWhsrjF&md5=adaa078e4686eb1bc1c1baa19e71ac50CAS |

[32]  H. Xu, C. Wolf, Chem. Commun. 2009, 3035.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmt1antbw%3D&md5=4ec1e95e0d92c9839b572ca9de2cb0dcCAS |

[33]  G. D. Vo, J. F. Hartwig, J. Am. Chem. Soc. 2009, 131, 11049.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotl2ht7Y%3D&md5=3ddc0fa3ea6ac6c7c135f207c4e7f83cCAS | 19591470PubMed |

[34]  D. S. Surry, S. L. Buchwald, J. Am. Chem. Soc. 2007, 129, 10354.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXosVWitLo%3D&md5=5a4b56a22cdf9a7d497054965f062952CAS | 17672469PubMed |

[35]  D. Tsvelikhovsky, S. L. Buchwald, J. Am. Chem. Soc. 2011, 133, 14228.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVGjur7F&md5=eb3196d2d79fca9ebaafeb8b21d477cdCAS | 21838278PubMed |

[36]  T. Schulz, C. Torborg, S. Enthaler, B. Schäffner, A. Dumrath, A. Spannenberg, H. Neumann, A. Börner, M. Beller, Chem. – Eur. J. 2009, 15, 4528.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltFCqtb8%3D&md5=769d0da845e584f8f681c9e1b49b504fCAS | 19322847PubMed |

[37]  A. Dumrath, C. Lübbe, H. Neumann, R. Jackstell, M. Beller, Chem. – Eur. J. 2011, 17, 9599.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsFaju7w%3D&md5=465e3ce99b102a8a20b4e650fff9e812CAS | 21805512PubMed |

[38]  P. G. Alsabeh, R. J. Lundgren, R. McDonald, C. C. C. Johansson Seechurn, T. J. Colacot, M. Stradiotto, Chem. – Eur. J. 2013, 19, 2131.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXkvF2rsw%3D%3D&md5=1f04a73f9b8a1c9164fa0c456dc9eb2fCAS | 23293095PubMed |

[39]  S. M. Crawford, C. B. Lavery, M. Stradiotto, Chem. – Eur. J. 2013, 19, 16760.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslaqs77F&md5=c508010647a5bbc4a0fefc7792f08da1CAS | 24281816PubMed |

[40]  R. J. Lundgren, B. D. Peters, P. G. Alsabeh, M. Stradiotto, Angew. Chem. Int. Ed. 2010, 49, 4071.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvFSlu70%3D&md5=a3f9edf80048b939e87244bc1918ac56CAS |

[41]  N. Iranpoor, F. Panahi, Adv. Synth. Catal. 2014, 356, 3067.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFamtLrM&md5=de1b416b03986069bd708e7f9ea0ed07CAS |

[42]  A. Borzenko, N. L. Rotta-Loria, P. M. MacQueen, C. M. Lavoie, R. McDonald, M. Stradiotto, Angew. Chem. Int. Ed. 2015, 54, 3773.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXltVOhuw%3D%3D&md5=6e1c53ee8f9e73e20918df2a1166998bCAS |

[43]  R. A. Green, J. F. Hartwig, Angew. Chem. Int. Ed. 2015, 54, 3768.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXktVKgtro%3D&md5=6bbdd02fcbd8a50496647c87e43b5ba8CAS |

[44]  J. L. Klinkenberg, J. F. Hartwig, Angew. Chem. Int. Ed. 2011, 50, 86.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1alu7rL&md5=8e292401bed4a69ecb2ff9956602ccc0CAS |

[45]  J. I. van der Vlugt, Chem. Soc. Rev. 2010, 39, 2302.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsFertrk%3D&md5=73602addb10370c7fdc33495cf7054eeCAS | 20422069PubMed |

[46]  R. A. Green, J. F. Hartwig, Org. Lett. 2014, 16, 4388.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlyntbjF&md5=feb891b6a5001545b581d4cb526f1179CAS | 25133675PubMed |

[47]  S. Ge, J. F. Hartwig, Angew. Chem. Int. Ed. 2012, 51, 12837.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1agtLrN&md5=095495fde598bbaa88f646e642055ff1CAS |

[48]  P. Leowanawat, N. Zhang, V. Percec, J. Org. Chem. 2012, 77, 1018.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs12hsLrM&md5=098a5ef88f104e593638989166ae7e29CAS | 22263719PubMed |

[49]  M. Tobisu, T. Xu, T. Shimasaki, N. Chatani, J. Am. Chem. Soc. 2011, 133, 19505.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlGktrbM&md5=4d40a331c8f4f20f4d359202202e03eeCAS | 22023167PubMed |

[50]  H. Chen, Z. Huang, X. Hu, G. Tang, P. Xu, Y. Zhao, C.-H. Cheng, J. Org. Chem. 2011, 76, 2338.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivFyjsL4%3D&md5=2a549476524d3347ab3b13e3043ed34fCAS | 21388215PubMed |

[51]  M. Baghbanzadeh, C. Pilger, C. O. Kappe, J. Org. Chem. 2011, 76, 1507.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXoslymtQ%3D%3D&md5=280184d37e223fa22996d137be923634CAS | 21250707PubMed |

[52]  M. R. Harris, L. E. Hanna, M. A. Greene, C. E. Moore, E. R. Jarvo, J. Am. Chem. Soc. 2013, 135, 3303.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjsFaks70%3D&md5=22e077f3c797f7b19e37d0370e748329CAS | 23414579PubMed |

[53]  B.-T. Guan, Y. Wang, B.-J. Li, D.-G. Yu, Z.-J. Shi, J. Am. Chem. Soc. 2008, 130, 14468.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1emtrzL&md5=ca191723a2481e88cc02fa704e218242CAS | 18847272PubMed |

[54]  K. W. Quasdorf, X. Tian, N. K. Garg, J. Am. Chem. Soc. 2008, 130, 14422.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1WlsbjK&md5=9da9cb112c2f583ec1ff373712d3384bCAS | 18839946PubMed |

[55]  D.-G. Yu, B.-J. Li, Z.-J. Shi, Acc. Chem. Res. 2010, 43, 1486.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFygt73J&md5=63a7015aaab3d9623a542f5e8e08ee81CAS | 20849101PubMed |

[56]  B. M. Rosen, K. W. Quasdorf, D. A. Wilson, N. Zhang, A. M. Resmerita, N. K. Garg, V. Percec, Chem. Rev. 2011, 111, 1346.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFaktbnK&md5=dddb6a01e58c38ced9cf8b65c65861baCAS | 21133429PubMed |

[57]  B.-J. Li, D.-G. Yu, C.-L. Sun, Z.-J. Shi, Chem. – Eur. J. 2011, 17, 1728.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFKlu7k%3D&md5=3a446e97d937a96e0dfdca792b1cbebcCAS | 21274921PubMed |

[58]  T. Mesganaw, N. K. Garg, Org. Process Res. Dev. 2013, 17, 29.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVSqtLjE&md5=69f2c807e378ba94854c3f15c03f5d30CAS |

[59]  J. Cornella, C. Zarate, R. Martin, Chem. Soc. Rev. 2014, 43, 8081.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVaksLvI&md5=1ed586a8c627fe1a2be130c21672bb8bCAS | 25157613PubMed |

[60]  B. Su, Z.-C. Cao, Z.-J. Shi, Acc. Chem. Res. 2015, 48, 886.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXislSnsbY%3D&md5=e9d8beb9deb8711ac3a258e3b721d2d9CAS | 25679917PubMed |

[61]  G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, Organometallics 2010, 29, 2176.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkslKms7Y%3D&md5=5ca7d5f6a250e2238671e0860772c0c2CAS |

[62]  A. Modak, J. Mondal, A. Bhaumik, Green Chem. 2012, 14, 2840.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVWksLvJ&md5=3acd05147308c7a541c85a75900868feCAS |

[63]  F. Li, N. Wang, L. Lu, G. Zhu, J. Org. Chem. 2015, 80, 3538.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXktVGksrc%3D&md5=eb7974d2d8c75155d309357520355789CAS | 25757153PubMed |

[64]  J. T. Markiewicz, O. Wiest, P. Helquist, J. Org. Chem. 2010, 75, 4887.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvVKqsb0%3D&md5=35150293b8789729b1270398e0815519CAS | 20568788PubMed |

[65]  S. Messaoudi, J.-D. Brion, M. Alami, Adv. Synth. Catal. 2010, 352, 1677.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptFygsbk%3D&md5=534ed6456063d919164c059367b708ccCAS |

[66]  J. L. Bolliger, C. M. Frech, Adv. Synth. Catal. 2010, 352, 1075.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltVymtbY%3D&md5=3a01b3c80f5dcee9536c25d93777ad4bCAS |