Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Antiproliferative Aporphine Alkaloids from Litsea glutinosa and Ethnopharmacological Relevance to Kuuku I’yu Traditional Medicine

Chi P. Ndi A B , Matthew J. Sykes C , David J. Claudie D , Ross A. McKinnon A B , Susan J. Semple B and Bradley S. Simpson A B E
+ Author Affiliations
- Author Affiliations

A Flinders Centre for Innovation in Cancer, Flinders University, Bedford Park, SA 5042, Australia.

B Quality Use of Medicines and Pharmacy Research Centre, Sansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia.

C Centre for Drug Discovery and Development, Sansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia.

D Chuulangun Aboriginal Corporation, PMB 30, Cairns Mail Centre, Cairns, Qld 4892, Australia.

E Corresponding author. Email: bradley.simpson@flinders.edu.au

Australian Journal of Chemistry 69(2) 145-151 https://doi.org/10.1071/CH15456
Submitted: 30 July 2015  Accepted: 10 November 2015   Published: 26 November 2015

Abstract

Australian Aboriginal people have a long history of relying on plants for the treatment of various ailments and illnesses. Our ongoing collaborative research project initiated by Chuulangun Aboriginal Corporation (Cape York, Australia) has recently focussed on revealing whether Kuuku I’yu plant medicines possess anticancer-related activities and the chemistry responsible for this. Here, we present results from a study of the plant Litsea glutinosa, used traditionally for the treatment of gastrointestinal disorders. Four known aporphine alkaloids N-methylactinodaphnine (1), boldine (2), N-methyllaurotetanine (3), and isoboldine (4) were isolated by activity-guided fractionation and tested for cytotoxicity against HT29, SKMEL28, and primary human keratinocytes. Compound 1 was the most cytotoxic and this observation may be explained by the presence of a 1,2-methylenedioxy group. In silico docking revealed that a plausible mechanism for the observed cytotoxicity is the stabilization of a topoisomerase II (β) DNA–enzyme complex. The ethnopharmacological relevance of this study is discussed in the context of researching and using traditional knowledge in biomolecular discovery.


References

[1]  D. J. Claudie, S. J. Semple, N. M. Smith, B. S. Simpson, in Indigenous Peoples’ Innovation: IP Pathways to Development (Eds P. Drahos, S. Frankel) 2012, pp. 29–66 (ANU epress: Canberra).

[2]  D.-G. Kong, Y. Zhao, G.-H. Li, B.-J. Chen, X.-N. Wang, H.-L. Zhou, H.-X. Lou, D.-M. Ren, T. Shen, J. Ethnopharmacol. 2015, 164, 256.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjtFegtbc%3D&md5=6ca90df537a27f121efa650262e69963CAS | 25698244PubMed |

[3]  M. Boyd, in Anticancer Drug Development Guide (Ed. B. Teicher) 1997, pp. 23–42 (Humana Press: Totowa, NJ).

[4]  P. Houghton, R. Fang, I. Techatanawat, G. Steventon, P. J. Hylands, C. C. Lee, Methods 2007, 42, 377.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtlantLc%3D&md5=eb9e3666b2c6a599056baae75fc4cb42CAS | 17560325PubMed |

[5]  J.-H. Yang, L. Li, Y.-S. Wang, J.-F. Zhao, H.-B. Zhang, S.-D. Luo, Helv. Chim. Acta 2005, 88, 2523.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtV2rsrnP&md5=dc78be603fe70ca15cb28710cdbd1649CAS |

[6]  S. Tewari, D. Bhakuni, M. Dhar, Phytochemistry 1972, 11, 1149.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38Xhtlyit7Y%3D&md5=c2b03e4b09ecced139a27dcb9454aa6dCAS |

[7]  N. Agrawal, A. S. Choudhary, M. C. Sharma, M. P. Dobhal, Chem. Biodivers. 2011, 8, 223.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXitFeitrw%3D&md5=2d0a284645c2b6d352e8861d0512404bCAS | 21337497PubMed |

[8]  N. Agrawal, D. Pareek, S. Dobhal, M. C. Sharma, Y. C. Joshi, M. P. Dobhal, Chem. Biodivers. 2013, 10, 394.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktFSht78%3D&md5=e545947a4fa180999a4c0b36bb393678CAS | 23495156PubMed |

[9]  J.-Y. Pan, S. Zhang, J. Wu, Q.-X. Li, Z.-H. Xiao, Helv. Chim. Acta 2010, 93, 951.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsVKqtb0%3D&md5=745f93621aba2c0aad2f4325264c1f31CAS |

[10]  C. Stevigny, C. Bailly, J. Quetin-Leclercq, Curr. Med. Chem. Anticancer Agents 2005, 5, 173.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhvVCju7w%3D&md5=bec8e499484be3eafed6a18bcf404ef0CAS | 15777224PubMed |

[11]  S. M. Mohamed, E. M. Hassan, N. A. Ibrahim, Nat. Prod. Res. 2010, 24, 1395.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlWlsrnM&md5=5a4da7e8af23e8f3083451580ed15ef0CAS | 19764006PubMed |

[12]  E. Sobarzo-Sánchez, B. K. Cassels, C. Saitz-Barría, C. Jullian, Magn. Reson. Chem. 2001, 39, 361.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  Natural Compounds – Alkaloids (Eds S. S. Azimova, M. S. Yunusov) 2013 (Springer Verlag: New York, NY).

[14]  Y. Nishiyama, M. Moriyasu, M. Ichimaru, K. Iwasa, A. Kato, S. G. Mathenge, P. B. Chalo Mutiso, F. D. Juma, Phytochemistry 2006, 67, 2671.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1CnsbnF&md5=879bc926bac7410c6298155182109106CAS | 16963092PubMed |

[15]  W. Yang-Chang, C. Ya-Chieh, C. Fang-Rong, C. Yuan-Yng, Phytochemistry 1997, 46, 181.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  X. Yan, X. Wei, H. Xie, M. Liu, F. Zhang, J. Trop. Subtrop. Bot. 2000, 8, 324.
         | 1:CAS:528:DC%2BD3MXitFOmurw%3D&md5=7b622a1ed2a45c66f384c1bc49ec04ddCAS |

[17]  M. Shamma, W. A. Slusarchyk, Chem. Rev. 1964, 64, 59.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXjtFWrtg%3D%3D&md5=356b34d543456faa39627b0772da11d5CAS |

[18]  V. Vichai, K. Kirtikara, Nat. Protoc. 2006, 1, 1112.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFOitL3O&md5=48c381b9cc9542ea9052f991d976f5e4CAS | 17406391PubMed |

[19]  P. Skehan, R. Storeng, D. Scudiero, A. Monks, J. McMahon, D. Vistica, J. T. Warren, H. Bokesch, S. Kenney, M. R. Boyd, J. Natl. Cancer Inst. 1990, 82, 1107.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXltVylsL8%3D&md5=21a9687564ca6baeaa20dbe603bab524CAS | 2359136PubMed |

[20]  A. Monks, D. Scudiero, P. Skehan, R. Shoemaker, K. Paull, D. Vistica, C. Hose, J. Langley, P. Cronise, A. Vaigro-Wolff, M. Gray-Goodrich, H. Campbell, J. Mayo, M. Boyd, J. Natl. Cancer Inst. 1991, 83, 757.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXksVWiuro%3D&md5=f27561e1674112894d851c739763f85dCAS | 2041050PubMed |

[21]  L. V. Rubinstein, R. H. Shoemaker, K. D. Paull, R. M. Simon, S. Tosini, P. Skehan, D. A. Scudiero, A. Monks, M. R. Boyd, J. Natl. Cancer Inst. 1990, 82, 1113.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXltVylsLw%3D&md5=3bb482e8c3d7b69c8b502a911722f6beCAS | 2359137PubMed |

[22]  K. Likhitwitayawuid, C. K. Angerhofer, H. Chai, J. M. Pezzuto, G. A. Cordell, N. Ruangrungsi, J. Nat. Prod. 1993, 56, 1468.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXks1Cj&md5=1e26b19cd3c5d9cf97da77547218a4feCAS | 8254346PubMed |

[23]  C. C. Wu, T. K. Li, L. Farh, L. Y. Lin, T. S. Lin, Y. J. Yu, T. J. Yen, C. W. Chiang, N. L. Chan, Science 2011, 333, 459.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovF2mur0%3D&md5=7b8103bbcb818df09b4f73e8b16e4af0CAS | 21778401PubMed |

[24]  P. O’Brien, C. Carrasco-Pozo, H. Speisky, Chem. Biol. Interact. 2006, 159, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlWqurzK&md5=e72710f913771170faca9ba7afcff90fCAS | 16221469PubMed |

[25]  M. S. Buchanan, A. R. Carrol, D. Pass, R. J. Quinn, Nat. Prod. Commun. 2007, 2, 255.
         | 1:CAS:528:DC%2BD2sXjt1Ggt7g%3D&md5=957cd685da8a9236c4affb476d083bc3CAS |

[26]  S. H. Woo, M. C. Reynolds, N. J. Sun, J. M. Cassady, R. M. Snapka, Biochem. Pharmacol. 1997, 54, 467.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlvFSisL0%3D&md5=4e4e69e9c90411a305ed2dc249cdbd69CAS | 9313773PubMed |

[27]  K. R. Hande, Eur. J. Cancer 1998, 34, 1514.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmvVSku7k%3D&md5=1d9ec572d13c126ccffa5748d0735996CAS | 9893622PubMed |

[28]  Z. F. Chen, Y. C. Liu, Y. Peng, X. Hong, H. H. Wang, M. M. Zhang, H. Liang, J. Biol. Inorg. Chem. 2012, 17, 247.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1CrtrfO&md5=c9ccb1d92ae703fdb7c0162e6abff206CAS | 21960256PubMed |

[29]  S. H. Woo, N.-J. Sun, J. M. Cassady, R. M. Snapka, Biochem. Pharmacol. 1999, 57, 1141.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXisFKhtrs%3D&md5=2cb5bcb3d05471c8bd8fbbc464350de6CAS | 11230801PubMed |

[30]  C.-C. Wu, Y.-C. Li, Y.-R. Wang, T.-K. Li, N.-L. Chan, Nucleic Acids Res. 2013, 41, 10630.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvV2lsbjJ&md5=3016273521434379cab24fd6b72e6248CAS | 24038465PubMed |

[31]  G. M. Cragg, P. G. Grothaus, D. J. Newman, Chem. Rev. 2009, 109, 3012.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsFCns7Y%3D&md5=ea5a6039abd9380299552c7f36e54f53CAS | 19422222PubMed |

[32]  G. M. Cragg, D. J. Newman, J. Ethnopharmacol. 2005, 100, 72.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvVKnsLY%3D&md5=18d318ad306ce5d67a110d9c6160c6c3CAS | 16009521PubMed |

[33]  K. Priyadarshini, U. Keerthi Aparajitha, Med. Chem. 2012, 2, 139.

[34]  J. K. Brewer, Intel. Prop. Rights 2014, 2, 1.

[35]  United Nations, United Nations Declaration on the Rights of Indigenous People (A/RES/61/295) 2007 (United Nations: New York, NY).

[36]  B. Simpson, D. Claudie, N. Smith, J. Wang, R. McKinnon, S. Semple, J. Ethnopharmacol. 2010, 132, 340.
         | 20633620PubMed |

[37]  B. S. Simpson, D. J. Claudie, J. P. Gerber, S. M. Pyke, J. Wang, R. A. McKinnon, S. J. Semple, J. Nat. Prod. 2011, 74, 650.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivVSisbo%3D&md5=7761d7354a203226ea7fd38b14d30ba6CAS | 21381684PubMed |

[38]  B. S. Simpson, X. Luo, M. Costabile, G. E. Caughey, J. Wang, D. J. Claudie, R. A. McKinnon, S. J. Semple, J. Nat. Prod. 2014, 77, 85.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXkvFGkuw%3D%3D&md5=9fb2cb0bb652f27415946dd92fda73e1CAS | 24400858PubMed |

[39]  H. Wagner, S. Bladt, Plant Drug Analysis – A Thin-Layer Chromatography Atlas, 2nd Edn 1996 (Springer: Berlin).

[40]  E. E. Bolton, Y. Wang, P. A. Thiessen, S. H. Bryant, in Annual Reports in Computational Chemistry (Eds A. W. Ralph, C. S. David) 2008, pp. 217–241 (Elsevier: Amsterdam).

[41]  OMEGA 2.5.1.4 2013 (OpenEye Scientific Software Inc.: Santa Fe, NM). Available at http://www.eyesopen.com (accessed 29 July 2015).

[42]  P. C. Hawkins, A. G. Skillman, G. L. Warren, B. A. Ellingson, M. T. Stahl, J. Chem. Inf. Model. 2010, 50, 572.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtlaisrY%3D&md5=36689b5cf53196d921655a914bb4a4e8CAS | 20235588PubMed |

[43]  M. McGann, J. Chem. Inf. Model. 2011, 51, 578.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvFGqsbk%3D&md5=c8244eb4c1048973c2a640b84e5f80faCAS | 21323318PubMed |

[44]  OEDocking 3.0.1 2012 (OpenEye Scientific Software Inc.: Santa Fe, NM). Available at http://www.eyesopen.com (accessed 29 July 2015).

[45]  VIDA 4.3.0.4 2014 (OpenEye Scientific Software Inc.: Santa Fe, NM). Available at http://www.eyesopen.com (accessed 29 July 2015).