Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

The Importance of Motions that Accompany Those Occurring Along the Reaction Coordinate*

Jeffrey R. Reimers A
+ Author Affiliations
- Author Affiliations

A International Centre for Quantum and Molecular Structure, College of Sciences, Shanghai University, Shanghai 200444, China, and School of Mathematical and Physical Sciences, The University of Technology Sydney, Sydney, NSW 2006, Australia. Email: jeffrey.reimers@uts.edu.au




Jeff Reimers learnt spectroscopy from Ian Ross and Gad Fischer, and thermodynamics from Bob Watts at the Australian National University. As a post-doctoral fellow, he studied semiclassical quantum mechanics with Kent Wilson and Eric Heller in the USA. He then became an ARC Research Fellow at Sydney University from 1985 to 2013, before moving to a joint appointment with The University of Technology, Sydney, and Shanghai University in 2014. At Sydney, he worked closely with Noel Hush and Max Crossley on electron-transfer reactions, molecular electronics, and porphyrin-based molecular devices. The focus of his work has been finding solutions to long-standing unsolved fundamental problems and the design and/or interpretation of new experimental techniques. He is a Fellow of the Royal Australian Chemical Institute and the Australian Academy of Science.

Australian Journal of Chemistry 68(8) 1202-1212 https://doi.org/10.1071/CH15313
Submitted: 29 May 2015  Accepted: 25 June 2015   Published: 21 July 2015

Abstract

The reaction coordinate is a well known quantity used to define the motions critical to chemical reactions, but many other motions always accompany it. These other motions are typically ignored but this is not always possible. Sometimes it is not even clear as to which motions comprise the reaction coordinate: spectral measurements that one may assume are dominated by the reaction coordinate could instead be dominated by the accompanying modes. Examples of different scenarios are considered. The assignment of the visible absorption spectrum of chlorophyll-a was debated for 50 years, with profound consequences for the understanding of how light energy is transported and harvested in natural and artificial solar-energy devices. We recently introduced a new, comprehensive, assignment, the centrepiece of which was determination of the reaction coordinate for an unrecognized photochemical process. The notion that spectroscopy and reactivity are so closely connected comes directly from Hush’s adiabatic theory of electron-transfer reactions. Its basic ideas are reviewed, similarities to traditional chemical theories drawn, key analytical results described, and the importance of the accompanying modes stressed. Also highlighted are recent advances that allow this theory to be applied to general transformations including isomerization processes, hybridization, aromaticity, hydrogen bonding, and understanding why the properties of first-row molecules such as NH3 (bond angle 108°) are so different to those of PH3–BiH3 (bond angles 90–93°). Historically, the question of what is the reaction coordinate and what is just an accompanying motion has not commonly been at the forefront of attention. In our new approach in which all chemical processes are described using the same core theory, this question becomes thrust forward as always being the most important qualitative feature to determine.


References

[1]  H. Eyring, M. Polanyi, Z. Phys. Chem. Abt. B 1931, 12, 279.
         | 1:CAS:528:DyaA3MXjtF2msw%3D%3D&md5=49b7f2adc4b8fae0163af95b9877a9e5CAS |

[2]  S. Sato, J. Chem. Phys. 1955, 23, 2465.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG28XhvVGhtg%3D%3D&md5=5259ad92ed3e5747c3b48a348a47e108CAS |

[3]  J. P. Bergsma, J. R. Reimers, K. R. Wilson, J. T. Hynes, J. Chem. Phys. 1986, 85, 5625.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXpslGq&md5=b39e22debc9a40d72600094cdd752fe5CAS |

[4]  M. Born, R. Oppenheimer, Ann. Phys. 1927, 389, 457.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  S. Hammes-Schiffer, A. A. Stuchebrukhov, Chem. Rev. 2010, 110, 6939.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlyhtbzN&md5=52e454ca663dba4003cf3a4b70e32966CAS | 21049940PubMed |

[6]  S. Hammes-Schiffer, Chem. Rev. 2010, 110, 6937.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFShtbrN&md5=b6553e329e21c8a68358bd39c7886b82CAS | 21141827PubMed |

[7]  G. Herzberg, E. Teller, Z. Phys. Chem. 1933, 21, 410.

[8]  R. L. Fulton, M. Gouterman, J. Chem. Phys. 1961, 35, 1059.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38Xkt1enug%3D%3D&md5=afaa9792498299c6b982eb2f43f799faCAS |

[9]  R. L. Fulton, M. Gouterman, J. Chem. Phys. 1964, 41, 2280.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXkslektLs%3D&md5=e41f05166b973ac34b007f98583fdf78CAS |

[10]  M. Gouterman, J. Chem. Phys. 1965, 42, 351.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXhvFKrug%3D%3D&md5=54355b71d0657130f5f2a184cec76ed0CAS |

[11]  I. G. Ross, Isr. J. Chem. 1975, 14, 118.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28Xhsl2gu7o%3D&md5=3658d37763829bf1176f81d9ee649e9dCAS |

[12]  G. Fischer, Vibronic Coupling 1984 (Academic Press: London).

[13]  N. S. Hush, in Soviet Electrochemistry: Proceedings of the Fourth Conference on Electrochemistry 1956 (Ed. A. N. Frumkin) (English translation: Consultants Bureau, New York) 1961, Vol. 1, pp. 99–100 (Trudy 4-go soveshchaniia po elektrokhimii 1-6 oktiabria 1956, published by Izd-vo Akademii nauk SSSR, Moskva, 1959).

[14]  N. S. Hush, Z. Elektrochem. Angew. Phys. Chem. 1957, 61, 734.
         | 1:CAS:528:DyaG2sXovFCqtw%3D%3D&md5=29c65f82c338688d58be6a0500926a0eCAS |

[15]  N. S. Hush, J. Chem. Phys. 1958, 28, 962.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG1cXptFKitA%3D%3D&md5=2190839bbaac51e0fb5294313a628a2fCAS |

[16]  N. S. Hush, Trans. Faraday Soc. 1961, 57, 557.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3MXhtV2ksrg%3D&md5=dc0e438210b372799863761530485edeCAS |

[17]  N. S. Hush, J. Electroanal. Chem. 1999, 460, 5.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhs1Sls7c%3D&md5=1d8659fd618daa5e05af1db81f376e35CAS |

[18]  R. A. Marcus, J. Chem. Phys. 1956, 24, 966.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG28XmtlWksw%3D%3D&md5=888b1d4eae363fda5b9e568e22eb2140CAS |

[19]  F. London, Z. Phys. 1928, 46, 455.
         | 1:CAS:528:DyaB1cXhtlSmsA%3D%3D&md5=45540de3eab83c1a3f7832d02de6a88cCAS |

[20]  M. G. Evans, M. Polanyi, Trans. Faraday Soc. 1938, 34, 11.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA1cXitVWisg%3D%3D&md5=4ca755b360055e3fe246fedcf7cb70e5CAS |

[21]  J. Horiuti, M. Polanyi, J. Mol. Catal. A: Chem. 2003, 199, 185.[translation of Acta Physicochimica U.R.S.S. 1935, 2, 505]
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjsVGmu7w%3D&md5=1709003d2681250a5a78c685fdde6e7bCAS |

[22]  F. T. Wall, G. Glockler, J. Chem. Phys. 1937, 5, 314.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA2sXjt1KntA%3D%3D&md5=2dcbce9553a258fbc87f56e346744b0cCAS |

[23]  N. S. Hush, J. Polym. Sci., Polym. Phys. Ed. 1953, 11, 289.
         | 1:CAS:528:DyaG2cXitVyltA%3D%3D&md5=dc3dad120e212e4f2ade1ae644dd36abCAS |

[24]  F. London, Z. Phys. 1932, 74, 143.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaA38XjtVWqtg%3D%3D&md5=9918be9fd3b02b13fa95feb049cdd5c7CAS |

[25]  L. D. Landau, Phys. Z. Sowjetunion 1932, 2, 46.
         | 1:CAS:528:DyaA3sXhvFGk&md5=22d4dfa4a81f0e83dbb9832c2f5aad24CAS |

[26]  L. D. Landau, Phys. Z. Sowjetunion 1932, 1, 88.
         | 1:CAS:528:DyaA38XktlOntQ%3D%3D&md5=4b13540001c400f83df96f081e72e020CAS |

[27]  T. Van Voorhis, T. Kowalczyk, B. Kaduk, L.-P. Wang, C.-L. Cheng, Q. Wu, Annu. Rev. Phys. Chem. 2010, 61, 149.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmt1WrsbY%3D&md5=a98c415c01fabd714d67441e69a6d06eCAS | 20055670PubMed |

[28]  E. J. Barton, C. Chiu, S. Golpayegani, S. N. Yurchenko, J. Tennyson, D. J. Frohman, P. F. Bernath, Mon. Not. R. Astron. Soc. 2014, 442, 1821.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFShsL3J&md5=67e2b246183d7ee495f61640ffe2d04dCAS |

[29]  S. B. Piepho, P. N. Schatz, Group Theory and Spectroscopy 1983 (Wiley: New York, NY).

[30]  I. B. Bersuker, Chem. Rev. 2013, 113, 1351.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXms1yisg%3D%3D&md5=2b96e9728b5bf9daa602e89dd63c7469CAS | 23301718PubMed |

[31]  N. S. Hush, NATO Adv. Study Inst. Ser., Ser. C 1980, 58, 151.
         | 1:CAS:528:DyaL3MXlslaiuw%3D%3D&md5=ba76ae94aa0fad0eb9223cccf51ac0dbCAS |

[32]  C. Creutz, H. Taube, J. Am. Chem. Soc. 1969, 91, 3988.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXltVGgs7o%3D&md5=3a328762ba88ef246939730040d82b49CAS |

[33]  K. D. Demadis, C. M. Hartshorn, T. J. Meyer, Chem. Rev. 2001, 101, 2655.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXms1ersrY%3D&md5=02c6c277a0346f8f060db388ce8441a6CAS | 11749392PubMed |

[34]  J. R. Reimers, B. B. Wallace, N. S. Hush, Philos. Trans. R. Soc. A 2008, 366, 15.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVCgsr0%3D&md5=0f8d13860541835c25601db88ee56781CAS |

[35]  J. R. Reimers, L. McKemmish, R. H. McKenzie, N. S. Hush, Phys. Chem. Chem. Phys. 2015,
         | Crossref | GoogleScholarGoogle Scholar |

[36]  V. G. Levich, R. R. Dogonadze, Dokl. Akad. Nauk. SSSR Ser. Fiz. Khim. 1959, 124, 123.
         | 1:CAS:528:DyaF3MXmtFA%3D&md5=e29f88eb0e23d1bd66f2629f3c11a657CAS |

[37]  R. Kubo, Y. Toyozawa, Prog. Theor. Phys. 1955, 13, 160.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  N. S. Hush, Prog. Inorg. Chem. 1967, 8, 391.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXhtVSjsbY%3D&md5=0d9a6f375971a0352ce765110d4e2fc4CAS |

[39]  J. R. Reimers, L. McKemmish, R. H. McKenzie, N. S. Hush, Phys. Chem. Chem. Phys. 2015,
         | Crossref | GoogleScholarGoogle Scholar |

[40]  I. B. Bersuker, Chem. Rev. 2001, 101, 1067.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhslagsLY%3D&md5=cc63413fb75d390f5b268bafeb8be2c1CAS | 11709858PubMed |

[41]  I. B. Bersuker, Adv. Quantum Chem. 2003, 44, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsVSmu70%3D&md5=db496bc7ea6bf5e86b4fd3640de4c69dCAS |

[42]  Y. Liu, I. B. Bersuker, W. Zou, J. E. Boggs, J. Chem. Theory Comput. 2009, 5, 2679.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOks7fM&md5=0cc9d68bcca2bc4837a840e74b7fd255CAS |

[43]  P. García-Fernández, J. A. Aramburu, M. Moreno, M. Zlatar, M. Gruden-Pavlović, J. Chem. Theory Comput. 2014, 10, 1824.
         | Crossref | GoogleScholarGoogle Scholar |

[44]  R. G. Pearson, J. Mol. Struct.: THEOCHEM 1983, 103, 25.
         | Crossref | GoogleScholarGoogle Scholar |

[45]  R. F. W. Bader, Can. J. Chem. 1962, 40, 1164.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38XksVSntro%3D&md5=4ce5073c50b7d4248ac7e9fcd62cb33dCAS |

[46]  L. Salem, J. S. Wright, J. Am. Chem. Soc. 1969, 91, 5947.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXlt12htro%3D&md5=6b066dd673796442e13ea15d63aa8a11CAS |

[47]  R. G. Pearson, J. Am. Chem. Soc. 1969, 91, 4947.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXkslCitb8%3D&md5=bc59e076c18025c85202e1f8c1473189CAS |

[48]  R. G. Pearson, Acc. Chem. Res. 1971, 4, 152.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXhtlSmt74%3D&md5=ad78db7847d42145266de77b7f66ac7eCAS |

[49]  C. C. Levin, J. Am. Chem. Soc. 1975, 97, 5649.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXlvVeqsLw%3D&md5=7d1f8203dd363e234f6f18bcedf31c67CAS |

[50]  S. Zilberg, Y. Haas, D. Danovich, S. Shaik, Angew. Chem. Int. Ed. 1998, 37, 1394.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjvFGjt74%3D&md5=8835f1a91c2b40b8c54786d5c343f45fCAS |

[51]  S. Shaik, S. Zilberg, Y. Haas, Acc. Chem. Res. 1996, 29, 211.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XisVymurc%3D&md5=2775cb99ac3b5c270f54b642ad2a4607CAS |

[52]  S. Shaik, A. Shurki, D. Danovich, P. C. Hiberty, J. Am. Chem. Soc. 1996, 118, 666.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XitFSmuw%3D%3D&md5=19a5270307951a6f3a3a42f7a9712277CAS |

[53]  S. Shaik, A. Shurki, D. Danovich, P. C. Hiberty, Chem. Rev. 2001, 101, 1501.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXis1Sqtrc%3D&md5=a33b96318007127148b72f7d3a28dff3CAS | 11710231PubMed |

[54]  S. Zilberg, Y. Haas, J. Phys. Chem. A 2011, 115, 10650.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFSmt7vO&md5=7058d14b8e8a164810c77894d7a7cab2CAS | 21851061PubMed |

[55]  P. Politzer, J. R. Reimers, J. S. Murray, A. Toro-Labbe, J. Phys. Chem. Lett. 2010, 1, 2858.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFGhsbvM&md5=71175bc5682923ad923806f1f912438aCAS |

[56]  A. Toro-Labbe, J. Phys. Chem. A 1999, 103, 4398.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtVSms78%3D&md5=9e0738862bfdfdff67e752676e130387CAS |

[57]  A. Toro-Labbe, S. Gutierrez-Oliva, J. S. Murray, P. Politzer, Mol. Phys. 2007, 105, 2619.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVGjsb%2FN&md5=03d19b50d1249cd08f77a7abb4cf25a6CAS |

[58]  A. Toro-Labbe, S. Gutierrez-Oliva, J. S. Murray, P. Politzer, J. Mol. Model. 2009, 15, 707.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlslGis7w%3D&md5=34e49fb5e3559f1b4b573e7356fda825CAS | 19085021PubMed |

[59]  J. R. Reimers, Z.-L. Cai, H. S. Hush, Chem. Phys. 2005, 319, 39.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Ort73L&md5=2029e7edbc2e68104d79e93dca94b853CAS |

[60]  S.-H. Lee, A. G. Larsen, K. Ohkubo, Z.-L. Cai, J. R. Reimers, S. Fukuzumi, M. J. Crossley, Chem. Sci. 2012, 3, 257.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFeju7bE&md5=c6222858034fc92fbe0f043c5bbcdb92CAS |

[61]  A. Warshel, Proc. Natl. Acad. Sci. USA 1978, 75, 5250.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXltVGnsw%3D%3D&md5=6229ec8fd16b9a18b70902a9e5c9bd88CAS | 281676PubMed |

[62]  S. D. Fried, S. Bagchi, S. G. Boxer, Science 2014, 346, 1510.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitV2gtrzN&md5=b004a090802f833b80055be14e14bc2eCAS | 25525245PubMed |

[63]  H. Rongsheng, L. Zijing, W. Kelin, Phys. Rev. B 2002, 65, 174303.
         | Crossref | GoogleScholarGoogle Scholar |

[64]  L. McKemmish, R. H. McKenzie, N. S. Hush, J. R. Reimers, Phys. Chem. Chem. Phys. 2015,
         | Crossref | GoogleScholarGoogle Scholar |

[65]  L. K. McKemmish, R. H. McKenzie, N. S. Hush, J. R. Reimers, J. Chem. Phys. 2011, 135, 244110.
         | Crossref | GoogleScholarGoogle Scholar | 22225147PubMed |

[66]  J. R. Reimers, L. McKemmish, R. H. McKenzie, N. S. Hush, Phys. Chem. Chem. Phys. 2015,
         | Crossref | GoogleScholarGoogle Scholar |

[67]  R. S. Mulliken, Acc. Chem. Res. 1976, 9, 7.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28Xms12qsw%3D%3D&md5=3a6e688b62ecf316493ec5c97f35bddfCAS |

[68]  J. R. Reimers, N. S. Hush, Chem. Phys. 2004, 299, 79.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhslWhtbk%3D&md5=5a9f09a6e0c78476f6dd6f3a4c1045d7CAS |

[69]  J. R. Reimers, N. S. Hush, in Mixed Valence Systems: Applications in Chemistry, Physics, and Biology (Ed. K. Prassides) 1991, pp. 29–50 (Kluwer Academic Publishers: Dordrecht).

[70]  J. R. Reimers, N. S. Hush, J. Phys. Chem. 1991, 95, 9773.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXms1Gktr4%3D&md5=f19e6d5caa9d517c4125a901169237aeCAS |

[71]  S. B. Piepho, E. R. Krausz, P. N. Schatz, J. Am. Chem. Soc. 1978, 100, 2996.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXktFCgt74%3D&md5=2760adb9e5e368380fa5a6d457084f6dCAS |

[72]  J. R. Reimers, N. S. Hush, Chem. Phys. 1996, 208, 177.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xkt12rsbg%3D&md5=5c118f1840544ef0edeffa31a2a42af9CAS |

[73]  K. K. Innes, I. G. Ross, W. R. Moomaw, J. Mol. Spectrosc. 1988, 132, 492.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXht1eqsLY%3D&md5=5c61b33964e5d3a55855c63ed7fc3ae6CAS |

[74]  E. U. Condon, Phys. Rev. 1928, 32, 858.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaB1MXit1CisQ%3D%3D&md5=9f0b7beb680febd11e4816ab3c0ef38bCAS |

[75]  A. G. Ozkabak, L. Goodman, K. B. Wiberg, J. Chem. Phys. 1990, 92, 4115.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXit1Gltr8%3D&md5=b20d7561da9d2319ebd8a6b8e19263efCAS |

[76]  D. M. Friedrich, W. M. McClain, Chem. Phys. Lett. 1975, 32, 541.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28Xhs1enug%3D%3D&md5=f9f9eb044c46125d417a5acb50892d63CAS |

[77]  J. Murakami, K. Kaya, M. Ito, J. Chem. Phys. 1980, 72, 3263.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXksFOitLY%3D&md5=a8b05d4a077ff314162036266fc42404CAS |

[78]  A. Warshel, J. Phys. Chem. 1982, 86, 2218.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38Xit1Cjsrc%3D&md5=c1aa945514b0db3813fe191e38afc2cbCAS |

[79]  J. E. Norton, J. L. Brédas, J. Am. Chem. Soc. 2008, 130, 12377.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtValu7%2FN&md5=5800cf406cec1c0054e2d8dfc69bebefCAS | 18715006PubMed |

[80]  G. Nan, X. Yang, L. Wang, Z. Shuai, Y. Zhao, Phys. Rev. B 2009, 79, 115203.
         | Crossref | GoogleScholarGoogle Scholar |

[81]  S. Yin, L. Li, Y. Yang, J. R. Reimers, J. Phys. Chem. C 2012, 116, 14826.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XosFekur4%3D&md5=d61df206f8f515b91918b7c482ee5b01CAS |

[82]  J. R. Winkler, H. B. Gray, Chem. Rev. 2014, 114, 3369.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVCmur%2FN&md5=be5d24ef5e6ae90f351d1b90d70fe51cCAS | 24279515PubMed |

[83]  J. M. Warman, M. P. de Haas, M. N. Paddon-Row, E. Cotsaris, N. S. Hush, H. Oevering, J. W. Verhoeven, Nature 1986, 320, 615.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xkt1Wru74%3D&md5=8353f9d437a73aae8a3e336e78af2ee3CAS |

[84]  S. Fukuzumi, K. Ohkubo, T. Suenobu, Acc. Chem. Res. 2014, 47, 1455.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXntlKnsb8%3D&md5=28246cc0253a668dccc6c2cacedd7472CAS | 24793793PubMed |

[85]  B. D. Sherman, M. D. Vaughn, J. J. Bergkamp, D. Gust, A. L. Moore, T. A. Moore, Photosynth. Res. 2014, 120, 59.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXkslegsL0%3D&md5=891e47659c5f64e84cd4c4a7fd69bd95CAS | 23397434PubMed |

[86]  S. Kirner, M. Sekita, D. M. Guldi, Adv. Mater. 2014, 26, 1482.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXisFOlt7g%3D&md5=3a68f2e95d69a3e1c64c2d5b2fd5e1a9CAS | 24532250PubMed |

[87]  Z.-Y. Gu, J. Park, A. Raiff, Z. Wei, H.-C. Zhou, ChemCatChem 2014, 6, 67.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1ersbbJ&md5=5afcbdec6f3cf011c7eb0f6a6306fea3CAS |

[88]  D. Curiel, K. Ohkubo, J. R. Reimers, S. Fukuzumi, M. J. Crossley, Phys. Chem. Chem. Phys. 2007, 9, 5260.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtV2itL3I&md5=d6f554cc186a6f20f6d94840938c6d14CAS | 19459289PubMed |

[89]  E. T. Johnson, F. Müh, E. Nabedryk, J. C. Williams, J. P. Allen, W. Lubitz, J. Breton, W. W. Parson, J. Phys. Chem. B 2002, 106, 11859.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotVWqtrw%3D&md5=62bf5c8a73c0bfd8b787dbf014fa7777CAS |

[90]  F. Müh, F. Lendzian, M. Roy, J. C. Williams, J. P. Allen, W. Lubitz, J. Phys. Chem. B 2002, 106, 3226.
         | Crossref | GoogleScholarGoogle Scholar |

[91]  J. Breton, E. Nabedryk, W. W. Parson, Biochemistry 1992, 31, 7503.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XltVygtb4%3D&md5=609cfc3f6e71390f396b4ea357e47784CAS | 1510937PubMed |

[92]  J. Breton, E. Nabedryk, A. Clérici, Vib. Spectrosc. 1999, 19, 71.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitlKhsLs%3D&md5=1bdae7cdbea486fc19b8ace3cf62d19cCAS |

[93]  T. P. Treynor, S. S. Andrews, S. G. Boxer, J. Phys. Chem. B 2003, 107, 11230.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnt1Cjs7Y%3D&md5=cd85f9940deca896d86c24861f41f411CAS |

[94]  J. R. Reimers, N. S. Hush, J. Chem. Phys. 2003, 119, 3262.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvVWksrc%3D&md5=b05f50dad4fcaaaf5cbfa5e4de4c8b7dCAS |

[95]  J. R. Reimers, W. A. Shapley, A. P. Rendell, N. S. Hush, J. Chem. Phys. 2003, 119, 3249.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvVWksrY%3D&md5=ac21cccd93c01f69d20021090dc38922CAS |

[96]  J. R. Reimers, W. A. Shapley, N. S. Hush, J. Chem. Phys. 2003, 119, 3240.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvVWksrk%3D&md5=9600b5cec5e55dc26e3fe4a273951606CAS |

[97]  J. R. Reimers, N. S. Hush, J. Am. Chem. Soc. 2004, 126, 4132.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitValsr0%3D&md5=414cd9d73a07115c12f65ac1b78515baCAS | 15053603PubMed |

[98]  J. R. Reimers, J. M. Hughes, N. S. Hush, Biochemistry 2000, 39, 16185.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotl2ns7w%3D&md5=caedc5452f15734788953958e46ae14dCAS | 11123947PubMed |

[99]  O. Kanchanawong, M. G. Dahlbom, T. P. Treynor, J. R. Reimers, N. S. Hush, S. G. Boxer, J. Phys. Chem. B 2006, 110, 18688.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xoslyjs7s%3D&md5=3c7d041df507041cb23db32bbf0ba073CAS |

[100]  C. S. Hansen, S. J. Blanksby, N. Chalyavi, E. J. Bieske, J. R. Reimers, A. J. Trevitt, J. Chem. Phys. 2015, 142, 014301.
         | Crossref | GoogleScholarGoogle Scholar | 25573555PubMed |

[101]  J. R. Reimers, Z.-L. Cai, R. Kobayashi, M. Rätsep, A. Freiberg, E. Krausz, Sci. Rep. 2013, 3, 2761.
         | Crossref | GoogleScholarGoogle Scholar | 24067303PubMed |

[102]  M. Umetsu, Z.-Y. Wang, M. Kobayashi, T. Nozawa, Biochim. Biophys. Acta, Bioenerg. 1999, 1410, 19.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXht1KmsLs%3D&md5=b911f62c50e4953ad70528e65b38a4beCAS |

[103]  M. Rätsep, J. Linnanto, A. Freiberg, J. Chem. Phys. 2009, 130, 194501.
         | Crossref | GoogleScholarGoogle Scholar | 19466837PubMed |

[104]  M. Rätsep, Z.-L. Cai, J. R. Reimers, A. Freiberg, J. Chem. Phys. 2011, 134, 024506.
         | Crossref | GoogleScholarGoogle Scholar | 21241119PubMed |

[105]  J. R. Reimers, E. Krausz, Phys. Chem. Chem. Phys. 2014, 16, 2315.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXlvF2itA%3D%3D&md5=9ea4dadba04e664ea574d6c9a00007dbCAS | 24346310PubMed |

[106]  J. R. Reimers, Z.-L. Cai, R. Kobayashi, M. Rätsep, A. Freiberg, E. Krausz, Phys. Chem. Chem. Phys. 2014, 16, 2323.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXlvF2itw%3D%3D&md5=fb40973faa518e97b102227f73ba8e28CAS | 24352346PubMed |

[107]  R. Kobayashi, J. R. Reimers, Mol. Phys. 2015, in press
         | Crossref | GoogleScholarGoogle Scholar |

[108]  J. R. Reimers, N. S. Hush, Chem. Phys. 1989, 134, 323.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXlvVWrsrc%3D&md5=8eb6262f526c5cd5e712440280665a36CAS |