Electrochemical Restructuring of Copper Surfaces Using Organic Additives and Its Effect on the Electrocatalytic Reduction of Nitrate Ions†
Ali Balkis A and Anthony P. O’Mullane B CA School of Applied Sciences, RMIT University, GPO Box 2476V, Melbourne, Vic 3001, Australia.
B School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, GPO Box 2434, Brisbane, Qld 4001, Australia.
C Corresponding author. Email: anthony.omullane@qut.edu.au
Australian Journal of Chemistry 68(8) 1213-1220 https://doi.org/10.1071/CH15191
Submitted: 16 April 2015 Accepted: 15 May 2015 Published: 16 June 2015
Abstract
This work describes the fabrication of nanostructured copper electrodes using a simple potential cycling protocol that involves oxidation and reduction of the surface in an alkaline solution. It was found that the inclusion of additives, such as benzyl alcohol and phenylacetic acid, has a profound effect on the surface oxidation process and the subsequent reduction of these oxides. This results in not only a morphology change, but also affects the electrocatalytic performance of the electrode for the reduction of nitrate ions. In all cases, the electrocatalytic performance of the restructured electrodes was significantly enhanced compared with the unmodified electrode. The most promising material was formed when phenylacetic acid was used as the additive. In addition, the reduction of residual oxides on the surface after the modification procedure to expose freshly active reaction sites on the surface before nitrate reduction was found to be a significant factor in dictating the overall electrocatalytic activity. It is envisaged that this approach offers an interesting way to fabricate other nanostructured electrode surfaces.
References
[1] (a) S. E. F. Kleijn, S. C. S. Lai, M. T. M. Koper, P. R. Unwin, Angew. Chem., Int. Ed. 2014, 53, 3558.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjt12lsro%3D&md5=d4d521a72ae24885c6689df5c0a4f9e2CAS |
(b) A. P. O’Mullane, Nanoscale 2014, 6, 4012.
| Crossref | GoogleScholarGoogle Scholar |
(c) H. Zhou, J. H. Park, F.-R. F. Fan, A. J. Bard, J. Am. Chem. Soc. 2012, 134, 13212.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. S. Bandarenka, M. T. M. Koper, J. Catal. 2013, 308, 11.
| Crossref | GoogleScholarGoogle Scholar |
(e) R. Gilliam, D. Kirk, S. Thorpe, Electrocatalysis 2011, 2, 1.
| Crossref | GoogleScholarGoogle Scholar |
(f) B. J. Plowman, S. K. Bhargava, A. P. O’Mullane, Analyst (Cambridge, U.K.) 2011, 136, 5107.
| Crossref | GoogleScholarGoogle Scholar |
(g) Y.-G. Zhou, E. J. E. Stuart, J. Pillay, S. Vilakazi, R. Tshikhudo, N. V. Rees, R. G. Compton, Chem. Phys. Lett. 2012, 551, 68.
| Crossref | GoogleScholarGoogle Scholar |
[2] Copper Electrodeposition for Nanofabrication of Electronics Devices (Eds K. Kondo, R. N. Akolkar, D. P. Barkey, M. Yokoi) 2014 (Springer: New York).
[3] (a) I. Najdovski, A. P. O’Mullane, J. Electroanal. Chem. 2014, 722–723, 95.
| Crossref | GoogleScholarGoogle Scholar |
(b) D. Nam, R. Kim, D. Han, J. Kim, H. Kwon, Electrochim. Acta 2011, 56, 9397.
| Crossref | GoogleScholarGoogle Scholar |
(c) I. Najdovski, P. R. Selvakannan, S. K. Bhargava, A. P. O’Mullane, Nanoscale 2012, 4, 6298.
| Crossref | GoogleScholarGoogle Scholar |
(d) N. D. Nikolić, G. Brankovic, M. G. Pavlovic, K. I. Popov, J. Electroanal. Chem. 2008, 621, 13.
| Crossref | GoogleScholarGoogle Scholar |
(e) J.-H. Kim, R.-H. Kim, H.-S. Kwon, Electrochem. Commun. 2008, 10, 1148.
| Crossref | GoogleScholarGoogle Scholar |
(f) N. D. Nikolić, K. I. Popov, L. J. Pavlovic, M. G. Pavlovic, Surf. Coat. Technol. 2006, 201, 560.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) X. Kang, Z. Mai, X. Zou, P. Cai, J. Mo, Anal. Biochem. 2007, 363, 143.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXislWks7o%3D&md5=ab4923829d6e4b426a94e6db5e784ff9CAS | 17288983PubMed |
(b) J. Yang, W.-D. Zhang, S. Gunasekaran, Biosens. Bioelectron. 2010, 26, 279.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) L. Huang, E.-S. Lee, K.-B. Kim, Colloids Surf., A 2005, 262, 125.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtFCrtr0%3D&md5=4a744588faa6be525a3acb27bdc44475CAS |
(b) J. Luo, H. Zhang, S. Jiang, J. Jiang, X. Liu, Microchim. Acta 2012, 177, 485.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. C. Tang, X. K. Meng, S. Vongehr, Electrochem. Commun. 2009, 11, 867.
| Crossref | GoogleScholarGoogle Scholar |
[6] K. Tan, M.-B. Tian, Q. Cai, Thin Solid Films 2010, 518, 5159.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnt12qsrk%3D&md5=b3773498778062e52fedd0185b1f01eeCAS |
[7] W. Huang, M. Wang, J. Zheng, Z. Li, J. Phys. Chem. C 2009, 113, 1800.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXls1akug%3D%3D&md5=f07162965d3607a84bd4b56c5558e420CAS |
[8] H. Qiu, L. Lu, L. Xue, X. Huang, Electrochim. Acta 2010, 55, 6081.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotlWktrc%3D&md5=ea8f18d1ba537bc73c8dc3d27db9f77dCAS |
[9] A. Weremfo, P. Carter, D. B. Hibbert, C. Zhao, Langmuir 2015, 31, 2593.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXisF2isrk%3D&md5=66d1ebd5eae517b93088fad3b090a5f2CAS | 25669232PubMed |
[10] D. Reyter, M. Odziemkowski, D. Belanger, L. Roue, J. Electrochem. Soc. 2007, 154, K36.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnsVOksLc%3D&md5=17648def032cef9eedd20eff3d328fd7CAS |
[11] L. Yu, H. Sun, J. He, D. Wang, X. Jin, X. Hu, G. Z. Chen, Electrochem. Commun. 2007, 9, 1374.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlslGitbg%3D&md5=e28365ac897f632a630f131039550e9dCAS |
[12] N. Tian, Z.-Y. Zhou, S.-G. Sun, Y. Ding, Z. L. Wang, Science 2007, 316, 732.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvVWrsLY%3D&md5=a86dd14385e1b7da5e9919f2a94d41eeCAS | 17478717PubMed |
[13] Z.-Y. Zhou, N. Tian, Z.-Z. Huang, D.-J. Chen, S.-G. Sun, Faraday Discuss. 2009, 140, 81.
| Crossref | GoogleScholarGoogle Scholar |
[14] (a) C. Costentin, M. Robert, J.-M. Saveant, Chem. Soc. Rev. 2013, 42, 2423.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXivFKrurc%3D&md5=32f2f675eb5d764ee03e7392fda383ecCAS | 23232552PubMed |
(b) C. W. Li, M. W. Kanan, J. Am. Chem. Soc. 2012, 134, 7231.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. Le, M. Ren, Z. Zhang, P. T. Sprunger, R. L. Kurtz, J. C. Flake, J. Electrochem. Soc. 2011, 158, E45.
| Crossref | GoogleScholarGoogle Scholar |
(d) R. Reske, M. Duca, M. Oezaslan, K. J. P. Schouten, M. T. M. Koper, P. Strasser, J. Phys. Chem. Lett. 2013, 4, 2410.
| Crossref | GoogleScholarGoogle Scholar |
[15] (a) S. Cherevko, C.-H. Chung, Talanta 2010, 80, 1371.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGhu77I&md5=afab41a697b0c1dd47dbe01944473c8eCAS | 20006101PubMed |
(b) S. Sattayasamitsathit, P. Thavarungkul, C. Thammakhet, W. Limbut, A. Numnuam, C. Buranachai, P. Kanatharana, Electroanalysis 2009, 21, 2371.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. Zhao, F. Wang, J. Yu, S. Hu, Talanta 2006, 70, 449.
| Crossref | GoogleScholarGoogle Scholar |
[16] (a) J. Davis, M. J. Moorcroft, S. J. Wilkins, R. G. Compton, M. F. Cardosi, Analyst (Cambridge, U.K.) 2000, 125, 737.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXitV2hsLs%3D&md5=9221e76931ab31b6f15620f6ffa20e94CAS |
(b) M. Duca, M. T. M. Koper, Energy Environ. Sci. 2012, 5, 9726.
| Crossref | GoogleScholarGoogle Scholar |
(c) G. E. Badea, Electrochim. Acta 2009, 54, 996.
| Crossref | GoogleScholarGoogle Scholar |
(d) R. Abdallah, F. Geneste, T. Labasque, H. Djelal, F. Fourcade, A. Amrane, S. Taha, D. Floner, J. Electroanal. Chem. 2014, 727, 148.
| Crossref | GoogleScholarGoogle Scholar |
(e) A. S. Lima, M. O. Salles, T. L. Ferreira, T. R. L. C. Paixão, M. Bertotti, Electrochim. Acta 2012, 78, 446.
| Crossref | GoogleScholarGoogle Scholar |
[17] J. Vijayakumar, S. Mohan, Trans. Inst. Met. Finish. 2013, 91, 165.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnvVOhurc%3D&md5=8f6558856f8f11052e2ac990383c8426CAS |
[18] S. M. Hassan, M. N. Moussa, M. M. El‐Tagoury, A. A. Radi, Anti-Corros. Methods Mater. 1990, 37, 8.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXkt1Oksbc%3D&md5=3f4011024b04fd3eca2ede5917e55c3bCAS |
[19] (a) M. J. A. Shiddiky, A. P. O’Mullane, J. Zhang, L. D. Burke, A. M. Bond, Langmuir 2011, 27, 10302.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptVKrtL8%3D&md5=3795d54adadd4d9329d07c38376fe23bCAS |
(b) L. D. Burke, L. M. Kinsella, A. M. O’Connell, Russ. J. Electrochem. 2004, 40, 1105.
| Crossref | GoogleScholarGoogle Scholar |
(c) L. D. Burke, J. A. Collins, J. Appl. Electrochem. 1999, 29, 1427.
| Crossref | GoogleScholarGoogle Scholar |
(d) L. D. Burke, M. J. G. Ahern, T. G. Ryan, J. Electrochem. Soc. 1990, 137, 553.
| Crossref | GoogleScholarGoogle Scholar |
[20] (a) L. D. Burke, J. A. Collins, M. A. Horgan, L. M. Hurley, A. P. O’Mullane, Electrochim. Acta 2000, 45, 4127.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnsF2lu7c%3D&md5=e17d2bc099536fc65818f36e340f55ffCAS |
(b) L. D. Burke, T. G. Ryan, J. Electrochem. Soc. 1990, 137, 1358.
| Crossref | GoogleScholarGoogle Scholar |
[21] M. Mahajan, S. K. Bhargava, A. P. O’Mullane, Electrochim. Acta 2013, 101, 186.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslOrsrnF&md5=a6c28b40de0d6c566e7db927be641d01CAS |
[22] K. Esumi, T. Itakura, K. Torigoe, Colloids Surf., A. 1994, 82, 111.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhslCgur4%3D&md5=18204a9e437cdece91243dff9b714db6CAS |
[23] T. C. Franklin, T. Williams, T. S. N. Sankara Narayanan, R. Guhl, G. Hair, J. Electrochem. Soc. 1997, 144, 3064.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmslakt7o%3D&md5=a223795ab7cb7e4e9d9353113dcd5bdaCAS |
[24] G. I. Medvedev, N. A. Makrushin, O. V. Ivanova, Russ. J. Appl. Chem. 2004, 77, 1104.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXot1Ohtro%3D&md5=6a6f442046402ba7679d8aed62ad1126CAS |
[25] N. Fredj, T. D. Burleigh, J. Electrochem. Soc. 2011, 158, C104.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXislamt7k%3D&md5=fc2b04c6b6bb9922e08c72dc49d6fcc2CAS |
[26] R. S. Abdel Hameed, H. I. AlShafey, A. H. Abu-Nawwas, Int. J. Electrochem. Sci. 2014, 9, 6006.
| 1:CAS:528:DC%2BC2cXhs1yrtbvK&md5=9a00152eb4a10f7fa987fda1911d3f01CAS |
[27] L. D. Burke, J. K. Casey, J. A. Morrissey, M. M. Murphy, Bull. Electrochem. 1991, 7, 506.
| 1:CAS:528:DyaK38Xlt1Sgtr8%3D&md5=ec602b246dce408879698d8e42d3ca9aCAS |
[28] B. Lertanantawong, A. P. O’Mullane, W. Surareungchai, M. Somasundrum, L. D. Burke, A. M. Bond, Langmuir 2008, 24, 2856.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhslKntr0%3D&md5=a06e2f9afd74c2d15506f09e7925d3e8CAS | 18266392PubMed |
[29] D. Burke, A. O’Mullane, V. Lodge, M. Mooney, J. Solid State Electrochem. 2001, 5, 319.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvVGmsbk%3D&md5=ceec50382ff5d6d2878bc5d59ac22117CAS |