Study on Pyrrole 4-Pyrazoline Derivatives: Experimental and Quantum Chemical Approaches
R. N. Singh A B , Poonam Rawat A and Vikas Baboo AA Department of Chemistry, University of Lucknow, Lucknow, 226006, India.
B Corresponding author. Email: rnsvk.chemistry@gmail.com
Australian Journal of Chemistry 69(6) 672-682 https://doi.org/10.1071/CH15208
Submitted: 24 April 2015 Accepted: 19 October 2015 Published: 1 December 2015
Abstract
As part of a study on pyrrole derivatives we report here a combined experimental and quantum chemical study of pyrrole 4-pyrazoline biheterocyclic derivatives. The structure of the synthesised compounds have been studied using experimental IR, UV, 1H and 13C NMR spectroscopic analyses along with density functional theory (DFT) calculations using the B3LYP functional with 6–311+G (d,p) basis set. The global, local reactivity, and thermodynamic parameters support the analysis. All the experimental vibrational bands have been discussed and assigned to normal modes on the basis of our calculations. In addition, the computed 1H and 13C NMR data, obtained by DFT calculations, are found to be in good agreement with the experimental data and serve as valuable tools in identifying the products. The vibrational analysis shows red shifts in vN–H and vC=O stretching vibrations as a result of dimer formation. The theoretical electronic absorption spectra have been calculated by using time dependent-DFT methods. The static first hyperpolarizability (β0) values for the synthesized pyrrole–pyrazoline derivatives 4A–D are calculated as 16.97 × 10–30, 47.64 × 10–30, 65.40 × 10–30, 65.39 × 10–30 esu, respectively, and increase from 4A to 4C as a result of the addition of an –NO2 acceptor in 4B and two –NO2 group acceptors in 4C. However, an additional –Cl group in 4D on the phenyl ring attached to the pyrazoline moiety does not result in a clear change from 4C. The calculated static and dynamic hyperpolarizability results show that the investigated molecules might be used as non-linear optical materials.
References
[1] E. Gondek, I. V. Kityk, A. Danel, A. Wisla, J. Sanetra, Synth. Met. 2006, 156, 1348.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1OkurY%3D&md5=c43482b31fa7b7df08ec2875d0432062CAS |
[2] M. A. Ali, M. Shaharyar, A. A. Siddiqui, Eur. J. Med. Chem. 2007, 42, 268.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXit1ylsbs%3D&md5=f52740e0fd511c0334105945d87bf986CAS | 17007966PubMed |
[3] M. Abid, A. Azam, Bioorg. Med. Chem. 2005, 13, 2213.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsFSjt7w%3D&md5=de6f77a59d38cd5339227b5c107a6d99CAS | 15727873PubMed |
[4] M. E. Shoman, M. Abdel–Aziz, O. M. Aly, H. H. Farag, M. A. Morsy, Eur. J. Med. Chem. 2009, 44, 3068.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltl2lurc%3D&md5=f1f2508fea8c355741d03e55240b00beCAS | 18722034PubMed |
[5] S. D’Andrea, Z. B. Zheng, K. D. Bleyker, J. C. Fung–Tomc, H. Yang, J. Clark, D. Taylor, J. Bronson, Bioorg. Med. Chem. Lett. 2005, 15, 2834.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXks1Wisrc%3D&md5=9a69878eb5135be9142b94cc90ea8da8CAS | 15911264PubMed |
[6] G. Turan-Zitouni, A. Özdemir, K. Güven, Arch. Pharm. 2005, 338, 96.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjvFeisL8%3D&md5=d5ea5a83c5d491993d1017a16743e5d0CAS |
[7] Z. Ozdemir, H. B. Kandilci, B. Gumusel, U. Calis, A. A. Bilgin, Arch. Pharm. 2008, 341, 701.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVOgsrbI&md5=a8b7f770a5cb084b70e7c0bd76108b78CAS |
[8] S.-J. Ji, H.-B. Shi, Dyes Pigm. 2006, 70, 246.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtF2qtr%2FM&md5=26ae8b9bc920fbedcc1fcb63fa8ecea3CAS |
[9] Y. Li, H.-Q. Zhang, J. Liu, X.-P. Yang, Z.-J. Liu, J. Agric. Food Chem. 2006, 54, 3737.
[10] G. Turan-Zitouni, P. Chevallet, F. S. Kiliç, K. Erol, Eur. J. Med. Chem. 2000, 35, 635.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXltlGqu74%3D&md5=f553becd7cc1d97f56c8fd325bc862abCAS | 10906414PubMed |
[11] L. Di Nunno, A. Scilimati, P. Vitale, Tetrahedron 2002, 58, 2659.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitFWksLs%3D&md5=a60e1f990ff2d3009db6f10253ef7c3eCAS |
[12] P. Zanirato, ARKIVOC 2009, 2009, 97.
[13] I. Fleming, Frontier Orbitals and Organic Chemical Reactions 1976 (Wiley: London).
[14] E. J. H. Chu, T. C. Chu, J. Org. Chem. 1954, 19, 266.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2MXhsF2lug%3D%3D&md5=51e6d12dabb406a9c61e85b495842679CAS |
[15] R. G. Pearson, Inorg. Chem. 1988, 27, 34.
| Crossref | GoogleScholarGoogle Scholar |
[16] P. Geerlings, F. D. Proft, W. Langenaeker, Chem. Rev. 2003, 103, 1793.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivFGgu7g%3D&md5=6284ea04d0ad0ebffa2ffc4306078334CAS | 12744694PubMed |
[17] R. G. Parr, L. V. Szentpály, S. Liu, J. Am. Chem. Soc. 1999, 121, 1922.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhtFagt7o%3D&md5=9215641d1df47abe9f6b210a7d7622f3CAS |
[18] P. K. Chattaraj, S. Giri, J. Phys. Chem. A 2007, 111, 11116.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFSqsrfF&md5=51efbb211a82e802f118d8580c0b733cCAS | 17915847PubMed |
[19] J. Padmanabhan, R. Parthasarathi, V. Subramaniaan, P. K. Chattaraj, J. Phys. Chem. A 2007, 111, 1358.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvFymsw%3D%3D&md5=8b149dc059e75301d66a32ecafe99747CAS | 17256919PubMed |
[20] R. G. Parr, J. L. Gázquez, J. Phys. Chem. 1993, 97, 3939.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhvFymtr4%3D&md5=5f103fce6e1c35e395abcc8b849a9862CAS |
[21] C. T. Arranja, M. R. Siva, A. M. Beja, A. F. P. V. Ferreira, A. J. F. N. Sobral, Acta Crystallogr. Sect. E: Crystallogr. Commun. 2008, E64, o1989.
| Crossref | GoogleScholarGoogle Scholar |
[22] M. G. Gardiner, R. C. Jones, S. Ng, J. A. Smith, Acta Crystallogr. Sect. E: Crystallogr. Commun. 2007, E63, o470.
| Crossref | GoogleScholarGoogle Scholar |
[23] M. O. Senge, K. M. Smith, Acta Crystallogr. Sect. C: Struct. Chem. 2005, C61, o537.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXps1Oqtrs%3D&md5=0a5414df5ba354f794068ff902fc6d56CAS |
[24] R. N. Singh, V. Baboo, P. Rawat, A. Kumar, D. Verma, Spectrochim. Acta Part A 2012, 94, 288.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnvFCjtb4%3D&md5=c7e5aa8b3ffaab435781e4a4f5f0459eCAS |
[25] D. A. Kleinman, Phys. Rev. 1962, 126, 1977.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38Xksleitrw%3D&md5=71e8fef984bfd2e194891dd1f02e8273CAS |
[26] K. Jug, S. Chiodo, P. Calaminici, A. Avramopoulos, M. G. Papadopoulos, J. Phys. Chem. A 2003, 107, 4172.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtlWhsbY%3D&md5=1ffa322a6a7a778ffda1cfe172b0d4efCAS |
[27] A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisVWgtrw%3D&md5=8d19467ad8c1702f0ea99c588855f696CAS |
[28] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktFWrtbw%3D&md5=79e43ed9bf1d779a643f274495dfae91CAS |
[29] P. Rawat, R. N. Singh, Spectrochim. Acta A 2015, 140, 344.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1arsg%3D%3D&md5=b35c50c1d209f91352dd529ff588c542CAS |
[30] P. Rawat, R. N. Singh, J. Mol. Struct. 2015, 1081, 293.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVGgurjF&md5=2881e540fb3239d072bd8d6cc64f0b4eCAS |
[31] P. Rawat, R. N. Singh, J. Mol. Struct. 2015, 1084, 326.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitFCrsA%3D%3D&md5=9bc84efec2151112b5949421a5560e1eCAS |
[32] P. Rawat, R. N. Singh, Arab. J. Chem. 2015,
| Crossref | GoogleScholarGoogle Scholar |
[33] R. N. Singh, P. Rawat, S. Sahu, J. Mol. Struct. 2014, 1065–1066, 99.
| Crossref | GoogleScholarGoogle Scholar |
[34] R. N. Singh, P. Rawat, S. Sahu, J. Mol. Struct. 2014, 1076, 437.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlKktb3E&md5=b5c46ad640825ac7a0370894c2c9bce4CAS |
[35] P. Rawat, R. N. Singh, Arab. J. Chem. 2014,
| Crossref | GoogleScholarGoogle Scholar |
[36] R. N. Singh, A. Kumar, R. K. Tiwari, P. Rawat, Spectrochim. Acta Part A 2013, 112, 182.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpsFagtrc%3D&md5=13cda261fa7cfd1aea116a15f5f14486CAS |
[37] R. N. Singh, P. Rawat, S. Sahu, J. Mol. Struct. 2014, 1054, 123.
[38] R. N. Singh, P. Rawat, S. Sahu, Spectrochim. Acta Part A 2015, 135, 1162.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlCksrvL&md5=d035c8f52da623795551455b6256dd3bCAS |
[39] P. Rawat, R. N. Singh, J. Mol. Struct. 2014, 1075, 462.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1Khtr%2FN&md5=4bfe64936677fec0bc1f6aa8686f61e7CAS |
[40] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al–Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03 2004 (Gaussian, Inc.: Wallingford CT).
[41] G. A. Zhurko, D. A. Zhurko, CHEMCRAFT: Lite Version Build 08 (freeware) 2005. Available at http://www.chemcraftprog.com/download.html