Improving Cycling Performance of LiMn2O4 Battery by Adding an Ester-Functionalized Ionic Liquid to Electrolyte
Tao Dong A , Suojiang Zhang A B , Liang Zhang A , Shimou Chen A and Xingmei Lu AA Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
B Corresponding author. Email: sjzhang@ipe.ac.cn
Australian Journal of Chemistry 68(12) 1911-1917 https://doi.org/10.1071/CH15154
Submitted: 1 April 2015 Accepted: 12 May 2015 Published: 1 June 2015
Abstract
Addressing capacity fading during electrochemical cycling is one of the most challenging issues of lithium-ion batteries based on LiMn2O4. Accordingly, in this work, an ester-functionalized ionic liquid, N-methylpyrrolidinium-N-acetate bis(trifluoromethylsulfonyl) imide ([MMEPyr][TFSI]), was designed as an additive to the electrolyte employed for Li/LiMn2O4 batteries to improve their electrochemical performance. A systematic comparative study was carried out using the LiTFSI-based electrolyte with and without [MMEPyr][TFSI] additive. After 100 cycles, the Li/LiMn2O4 half-cells retained 94 % of their initial discharge capacity in the electrolyte containing 10 wt-% [MMEPyr][TFSI]. However, the cycling capacity of the half-cells in the electrolyte without [MMEPyr][TFSI] decreased considerably to ~21 mAh g–1 within the first 10 cycles. One of the main reasons for the decrease is the stabilization of the Al current collector by the [MMEPyr][TFSI] additive, as demonstrated by scanning electron microscopy, cyclic voltammetry, and Fourier transform infrared spectroscopy. Moreover, the Li/LiMn2O4 cells in the electrolyte containing [MMEPyr][TFSI] displayed high-rate performance, whereby ~90 % of the cell initial discharge capacity was retained at 2.5C.
References
[1] N. Wongittharom, C. H. Wang, Y. C. Wang, G. T. K. Fey, H. Y. Li, T. Y. Wu, T. C. Lee, J. K. Chang, J. Power Sources 2014, 260, 268.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXms1GhtLY%3D&md5=896d2d5b39288a900acfe2a405360f6eCAS |
[2] M. Wohlfahrt-Mehrens, C. Vogler, J. Garche, J. Power Sources 2004, 127, 58.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvVGktL4%3D&md5=190712015c9f035191ce5f1feda19f59CAS |
[3] M. Armand, J. M. Tarascon, Nature 2008, 451, 652.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhs1Kntrc%3D&md5=0422f82e0bba488bddd1ca92de2ab4e0CAS | 18256660PubMed |
[4] V. Borgel, E. Markevich, D. Aurbach, G. Semrau, M. Schmidt, J. Power Sources 2009, 189, 331.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsVehu7o%3D&md5=dbf98c1886205eb3c43c00fe3399f659CAS |
[5] J. M. Tarascon, M. Armand, Nature 2001, 414, 359.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovFGitrY%3D&md5=8f0a25eae329508d9bc76afed67b614eCAS | 11713543PubMed |
[6] J. G. Huddleston, A. E. Visser, W. M. Reichert, H. D. Willauer, G. A. Broker, R. D. Rogers, Green Chem. 2001, 3, 156.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtVWhsr8%3D&md5=89eae2e46d3b309b5cf631dc5a8fae2eCAS |
[7] D. R. MacFarlane, N. Tachikawa, M. Forsyth, J. M. Pringle, P. C. Howlett, G. D. Elliott, J. H. Davis, M. Watanabe, P. Simon, C. A. Angell, Energy Environ. Sci. 2014, 7, 232.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFKhtrbJ&md5=e59ae18a3a9e04f0b4491f1d13b23bb7CAS |
[8] S. J. Zhang, J. Sun, X. C. Zhang, Q. Q. Miao, J. J. Wang, Chem. Soc. Rev. 2014, 43, 7838.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslOis7bK&md5=3c27688677ed334eb1246cef0f292121CAS |
[9] S. M. Chen, S. J. Zhang, X. M. Liu, J. Q. Wang, J. J. Wang, K. Dong, J. Sun, B. H. Xu, Phys. Chem. Chem. Phys. 2014, 16, 5893.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjslGjsLg%3D&md5=3d5f3831eea425a8c1f7c7d6c36d7d5eCAS |
[10] K. Dong, S. J. Zhang, Q. Wang, Sci. China: Chem. 2015, 58, 495.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVGrsLnP&md5=143e05c465049581f18cf58aeabf6ec7CAS |
[11] Z. N. Wang, Y. J. Cai, Z. H. Wang, S. M. Chen, X. M. Lu, S. J. Zhang, J. Solid State Electrochem. 2013, 17, 2839.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Wnsr3M&md5=4e8d14c78d0f5d90872278a7d6a70b0fCAS |
[12] M. Armand, F. Endres, D. R. MacFarlane, H. Ohno, B. Scrosati, Nat. Mater. 2009, 8, 621.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovFSisr0%3D&md5=c3b8ca479882380ff5acca01fc340bdaCAS | 19629083PubMed |
[13] M. Galinski, A. Lewandowski, I. Stepniak, Electrochim. Acta 2006, 51, 5567.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotVaqtr8%3D&md5=7409c28464ec4b2d148ab1e3b7f5ee3fCAS |
[14] X. G. Sun, S. Dai, Electrochim. Acta 2010, 55, 4618.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvVelu7Y%3D&md5=ee9f25108f6354b235f32c7a15b43148CAS |
[15] M. Ishikawa, T. Sugimoto, M. Kikuta, E. Ishiko, M. Kono, J. Power Sources 2006, 162, 658.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFSgsLvL&md5=70c189cf0a9ff34fa23fb4ab6b5d2cb1CAS |
[16] H. Yoon, A. S. Best, M. Forsyth, D. R. MacFarlane, P. C. Howlett, Phys. Chem. Chem. Phys. 2015, 17, 4656.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvVWrsQ%3D%3D&md5=064939486034183b8029fcf1dc7051dcCAS | 25587829PubMed |
[17] C. Cama, R. A. DiLeo, K. J. Takeuchi, A. C. Marschilok, E. S. Takeuchi, ECS Trans. 2014, 61, 79.
| Crossref | GoogleScholarGoogle Scholar |
[18] Z. N. Wang, Y. J. Cai, T. Dong, S. M. Chen, X. M. Lu, Ionics 2013, 19, 887.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXot1Grsbw%3D&md5=dea1ea8a7551a50c6718df606c352880CAS |
[19] P. C. Howlett, D. R. MacFarlane, A. F. Hollenkamp, Electrochem. Solid-State Lett. 2004, 7, A97.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXis1Wls78%3D&md5=449fcd94e86ff2c84c9b352bb2b75ab9CAS |
[20] B. Garcia, S. Lavalle, G. Perron, C. Michot, M. Armand, Electrochim. Acta 2004, 49, 4583.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvFamsbo%3D&md5=f1bb41489db01613b8653366fc8dba49CAS |
[21] S. Y. Bae, W. K. Shin, D. W. Kim, Electrochim. Acta 2014, 125, 497.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXlvVWjtrY%3D&md5=19062890d2b8aa813e8eeaa2afc09b19CAS |
[22] X. G. Sun, C. Liao, L. Baggetto, B. K. Guo, R. R. Unocic, G. M. Veith, S. Dai, J. Mater. Chem. A 2014, 2, 7606.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmslGqsro%3D&md5=4d629961ae00c2f7c38e3a5df57a4bbeCAS |
[23] S. Y. Bae, E. G. Shim, D. W. Kim, J. Power Sources 2013, 244, 266.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXit1emsLY%3D&md5=f23744a54503e2f8aa6e264f6565fa66CAS |
[24] J. S. Lee, N. D. Quan, J. M. Hwang, J. Y. Bae, H. Kim, B. W. Cho, H. S. Kim, H. Lee, Electrochem. Commun. 2006, 8, 460.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhslKltLs%3D&md5=5f97bf8098b2a6aae423bf892e6ff7c2CAS |
[25] B. Müller, S. Fischer, Corros. Sci. 2006, 48, 2406.
| Crossref | GoogleScholarGoogle Scholar |
[26] J. Bartley, N. Huynh, S. E. Bottle, H. Flitt, T. Notoya, D. P. Schweinsberg, Corros. Sci. 2003, 45, 81.
| Crossref | GoogleScholarGoogle Scholar |
[27] S. H. Fang, Y. Jin, L. Yang, S. I. Hirano, K. Tachibana, S. Katayama, Electrochim. Acta 2011, 56, 4663.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkslChu7s%3D&md5=2fc93473167a701112ca216b9515fe46CAS |
[28] Y. Y. Xia, Y. H. Zhou, M. Yoshio, J. Electrochem. Soc. 1997, 144, 2593.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlvFOhsLk%3D&md5=828bfbda6cd2efeb648e690275a12327CAS |
[29] M. H. Rossouw, A. Kock, L. A. Picciotto, M. M. Thackeray, Mater. Res. Bull. 1990, 25, 173.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXktFemurg%3D&md5=b295ddd19183a85c2546fe8fa8d14ecdCAS |
[30] Y. L. Cui, W. J. Bao, Z. Yuan, Q. C. Zhuang, Z. Sun, J. Solid State Electrochem. 2012, 16, 1551.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksVaqsL4%3D&md5=83f9692e81613b4f6cb575b00eeea83fCAS |
[31] W. Liu, K. Wowal, G. C. Farrington, J. Electrochem. Soc. 1998, 145, 459.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXpsFKrtw%3D%3D&md5=6eb7c5ca82ac3962e3a75931836cb0fbCAS |
[32] D. Aurbach, M. D. Levi, K. Gamulski, B. Markovsky, G. Salitra, E. Levi, U. Heider, L. Heider, D. Oesten, J. Power Sources 1999, 81–82, 472.
| Crossref | GoogleScholarGoogle Scholar |
[33] X. M. Wang, E. Yasukawa, S. Mori, Electrochim. Acta 2000, 45, 2677.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsl2qsbc%3D&md5=fb160dad91638ac0b81b5f355797e3bcCAS |
[34] C. X. Peng, L. Yang, Z. X. Zhang, K. Tachibana, Y. Yang, J. Power Sources 2007, 173, 510.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFalsL7O&md5=b7abd873258cafbffd6ee4cd6ed8cdc8CAS |