Synthesis, Absorption, and Fluorescence Studies of Coumaryl-Labelled Amino Acids and Dipeptides Linked Via Triazole Ring
Santosh Kumari A , Sunita Joshi B , S. M. Abdul Shakoor A , Devesh S. Agarwal A , Siva S. Panda C , Debi D. Pant B and Rajeev Sakhuja A DA Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India.
B Department of Physics, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India.
C Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA.
D Corresponding author. Email: sakhuja.rajeev@gmail.com
Australian Journal of Chemistry 68(9) 1415-1426 https://doi.org/10.1071/CH14708
Submitted: 11 December 2014 Accepted: 9 February 2015 Published: 7 April 2015
Abstract
Fluorophores based on 4-triazolyl, 7-hydroxy-4-triazolylmethyl, 4-O-triazolylmethyl, and 7-O-triazolylmethyl coumaryl-tagged amino acids and dipeptides were synthesized by copper-catalyzed [3 + 2] cycloaddition reaction between azido- or alkynyl-functionalized coumarins with alkynyl- or azido-functionalized amino acid and dipeptides in good-to-excellent yields. Steady-state absorption and the fluorescence properties of the synthesized conjugates were studied. The chemical applicability of these amino acid and peptide-based fluorophores was successfully demonstrated by their linear elongation by further tagging them with appropriate C- or N-terminus amino acid.
References
[1] M. S. Dillingham, M. I. Wallace, Org. Biomol. Chem. 2008, 6, 3031.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpslWmtL0%3D&md5=3e45cd4514836e9457ecdeee62b8de72CAS | 18698457PubMed |
[2] H. Mihara, S. Lee, Y. Shimohigashi, H. Aoyagi, T. Kato, N. Izumiya, T. Costa, FEBS Lett. 1985, 193, 35.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XosVKqtg%3D%3D&md5=b21f3bba30eaa095db2c74884121ce3dCAS | 2998877PubMed |
[3] (a) S. Heiner, H. Detert, A. Kuhn, H. Kunz, Bioorg. Med. Chem. 2006, 14, 6149.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XosVOhsrs%3D&md5=f69650dd34085c001006d6b9bf9c5308CAS | 16828561PubMed |
(b) Z. Zhou, C. J. Fahrni, J. Am. Chem. Soc. 2004, 126, 8862.
| Crossref | GoogleScholarGoogle Scholar |
[4] X.-G. Zhou, M.-S. Peng, T.-Z. Feng, S. Afr. J. Chem. 2013, 66, 69.
| 1:CAS:528:DC%2BC3sXlslCnt7k%3D&md5=25a92f9379a9de3b2add53713d8f1cf2CAS |
[5] I. Kosiova, P. Kois, Collect. Czech. Chem. Commun. 2007, 72, 996.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVKqtL3N&md5=7df193d3fccf12925a9e1a499009d6b7CAS |
[6] S. Zhou, J. Jia, J. Gao, L. Han, Y. Li, W. Sheng, Dyes Pigm. 2010, 86, 123.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitlSnu7g%3D&md5=4b6904b60f98444a3f638c87380fcd00CAS |
[7] S. Azim, S. Al-Hazmy, E. Ebeid, S. El-Daly, Opt. Laser Technol. 2005, 37, 245.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFeitr7L&md5=3e87c561c44f10dd0571eb48c5803537CAS |
[8] B. D. Wagner, Molecules 2009, 14, 210.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Slsbk%3D&md5=168433c6e9759a81ec1e71794ccb1a59CAS | 19127249PubMed |
[9] D. Y. Yee, V. Balsanek, D. Sames, J. Am. Chem. Soc. 2004, 126, 2282.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVakuro%3D&md5=c10067c19492f3bdb173df00b77d1f1fCAS |
[10] J. Wang, J. Xie, P. G. Schultz, J. Am. Chem. Soc. 2006, 128, 8738.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtVSitro%3D&md5=4b07c65d0b5bf21c8af8dbbb2cef0fccCAS | 16819861PubMed |
[11] J. L. Lauer-Fields, T. Broder, T. Sritharan, L. Chung, H. Nagase, G. B. Fields, Biochemistry 2001, 40, 5795.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXislSqtL8%3D&md5=87d8a088262c20bf983a31c7fbe17062CAS | 11341845PubMed |
[12] X. Jin, C. Uttamapinant, A. Y. Ting, ChemBioChem 2011, 12, 65.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1agtrrN&md5=fbc44cb9bc9a02170e858f849b1e4791CAS | 21154801PubMed |
[13] A. R. Katritzky, T. Narindoshvili, P. Angrish, Synthesis 2008, 2013.
| 1:CAS:528:DC%2BD1cXhtVSrsbvL&md5=7c98062fcc3dc43512937ab1287a214eCAS |
[14] M. Meldal, C. W. Tornøe, Chem. Review 2008, 108, 2952.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXps1yhurk%3D&md5=12ec0ea426a802149382c4bf1e9e18cbCAS |
[15] G. C. Tron, T. Pirali, R. A. Billington, P. L. Canonico, G. Sorba, A. A. Genazzani, Med. Res. Rev. 2008, 28, 278.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsVerurg%3D&md5=ce1bf4991ee88fbdc0d00683184942bbCAS | 17763363PubMed |
[16] W. S. Horne, M. K. Yadav, C. D. Stout, M. R. Ghadiri, J. Am. Chem. Soc. 2004, 126, 15366.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptlSgtrw%3D&md5=adc9efd69136e7c80b033093647aab8cCAS | 15563148PubMed |
[17] K. Oh, Z. Guan, Chem. Commun. 2006, 3069.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntFykur0%3D&md5=9437e7fba08072c48c041f79fce17b85CAS |
[18] A. Tam, U. Arnold, M. B. Soellner, R. T. Raines, J. Am. Chem. Soc. 2007, 129, 12670.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFSmsLvK&md5=26c19c3373b12da5200942ddeae6b853CAS | 17914828PubMed |
[19] K. Sivakumar, F. Xie, B. M. Cash, S. Long, H. N. Barnhill, Q. Wang, Org. Lett. 2004, 6, 4603.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptlSis7c%3D&md5=5a24faa5bb2e62b713b281a7d35a079fCAS | 15548086PubMed |
[20] A. V. Moro, P. C. Ferreira, P. Migowski, F. S. Rodembusch, J. Dupont, D. S. Ludtke, Tetrahedron 2013, 69, 201.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1aru7zL&md5=dd59174f46d84acd24d87b32ffa4db1dCAS |
[21] N. Li, P. Zhao, M. E. Igartua, A. Rapakousiou, L. Salmon, S. Moya, J. Ruiz, D. Astruc, Inorg. Chem. 2014, 53, 11802.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslGktL3F&md5=5b80b9798a5d3ce74c1587db54634db9CAS | 25363304PubMed |
[22] M. Kováč, A. Sabatié, L. Floch, ARKIVOC 2001, 2001, 100.
| Crossref | GoogleScholarGoogle Scholar |
[23] W. Lin, L. Long, J. Feng, B. Wang, C. Guo, Eur. J. Org. Chem. 2007, 2007, 4301.
| Crossref | GoogleScholarGoogle Scholar |
[24] S. P. Bew, G. D. Hiatt-Gipson, J. Org. Chem. 2010, 75, 3897.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXls12jsrw%3D&md5=f020a919232951aa8aab17daa655a4e8CAS | 20443610PubMed |
[25] T. Aravinda, H. S. B. Naik, H. R. P. Naik, Int. J. Pept. Res. Ther. 2009, 15, 273.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGgsb%2FE&md5=a24bc76657872f27f070c2457e9a7479CAS |
[26] G. Gao, F. Sanda, T. Masuda, Macromolecules 2003, 36, 3932.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjsVOisr4%3D&md5=82c589cc8d38a4745acee8ba8fb79253CAS |
[27] N. Anand, N. Jaiswal, S. K. Pandey, A. K. Srivastava, R. P. Tripathi, Carbohydr. Res. 2011, 346, 16.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFCru7fF&md5=08c56157b40ad0e30641bacec8c952d5CAS | 21129735PubMed |
[28] N. J. Stanley, D. S. Pedersen, B. Nielsen, T. Kyist, J. M. Mathiesen, H. Bräuner-Osborne, D. K. Taylor, A. D. Abell, Bioorg. Med. Chem. Letters 2010, 20, 7512.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVKjtbvJ&md5=3c1b66f5f610f5eb7a811eaa7fe5cf93CAS |
[29] H. Li, Y. Yao, C. Han, J. Zhan, Chem. Commun. 2009, 4812.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptlCntrk%3D&md5=0dcb5586ba1e02f7ecc97623ec20fb37CAS |
[30] E. Ko, J. Liu, L. M. Perez, G. Lu, A. Schaefer, K. Burgess, J. Am. Chem. Soc. 2011, 133, 462.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1SrsbrM&md5=10d2e90f397301cc56772dbed8d70fd2CAS | 21182254PubMed |
[31] J. H. Mishra, D. Pant, T. C. Pant, H. B. Tripathi, J. Photochem. Photobiol. Chem. 2006, 177, 197.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsFOrtA%3D%3D&md5=146645afb7f4db34143e0c1585e0b301CAS |
[32] C. Ranjith, K. K. Vijayan, V. K. Praveen, N. S. S. Kumar, Spectrochim. Acta, Part A 2010, 75, 1610.
| Crossref | GoogleScholarGoogle Scholar |