Triethylenetetramine-Modified P123-Occluded Zr-SBA-15 Molecular Sieve for CO2 Adsorption
Fan-Ming Yang A , Ying Liu A , Lang Chen A , Chak-Tong Au A B and Shuang-Feng Yin A CA State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, China.
B Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
C Corresponding author. Email: sf_yin@hnu.edu.cn
Australian Journal of Chemistry 68(9) 1427-1433 https://doi.org/10.1071/CH14680
Submitted: 26 November 2014 Accepted: 20 February 2015 Published: 17 April 2015
Abstract
A pluronic 123 (P123)-occluded mesoporous molecular sieve Zr-SBA-15, Zr-SBA(P) was modified with triethylenetetramine (TETA) and tested for CO2 adsorption. The synthesized materials were characterized by powder X-ray diffraction, N2 adsorption–desorption, dispersive spectroscopy, thermogravimetric analysis, temperature-programmer desorption of CO2, and Fourier transform infrared spectroscopy. The results of CO2 adsorption show that the TETA and P123 species have positive effects on the CO2 adsorption capacity of the adsorbent, and the performance of the as-prepared adsorbent in a stream of low CO2 concentration is excellent. At 50 wt-% TETA loading, Zr-SBA(P) has a maximum capacity of 4.27 mmol g–1 in a stream of 5 % CO2 at 50°C, ~33.5 % higher than the adsorbent prepared in the absence of P123. In addition, the adsorbent is superior in reusability. It is envisaged that the adsorbent will find wide application in CO2 capture.
References
[1] N. von der Assen, P. Voll, M. Peters, A. Bardow, Chem. Soc. Rev. 2014, 43, 7982.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVGhs7%2FE&md5=8e5cd5a814de3e8a8212881e72cc1d17CAS | 24441866PubMed |
[2] E. Kintisch, Science 2008, 322, 182.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1KrsLjF&md5=9b8d8e45d2bcf7c581ebc94af8421b1dCAS | 18845723PubMed |
[3] E. S. Rubin, H. Mantripragada, A. Marks, P. Versteeg, J. Kitchin, Prog. Energy Combust. Sci. 2012, 38, 630.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtF2htLbI&md5=9d58064fbd0dc9368f4fedaacaf358baCAS |
[4] R. S. Haszeldine, Science 2009, 325, 1647.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGqt7zN&md5=223c1a5ed32fa18b16464585b94e60e2CAS | 19779187PubMed |
[5] Y. J. Wu, P. Li, J. G. Yu, A. F. Cunha, A. E. Rodrigues, Chem. Eng. Technol. 2013, 36, 567.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjsFCltrY%3D&md5=dfe2fe84dde5fa5536e190e612c54a05CAS |
[6] C. V. Miguel, R. Trujillano, V. Rives, M. A. Vicente, A. E. P. Ferreira, A. E. Rodrigues, A. Mendes, L. M. Madeira, Sep. Purif. Technol. 2014, 127, 202.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtVajtbs%3D&md5=d6e4bc0352d09449f37ab3a5d0d1685bCAS |
[7] K. Wang, X. Guo, P. Zhao, F. Wang, C. Zheng, J. Hazard. Mater. 2011, 189, 301.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksVemu78%3D&md5=ce10be944b824a0401e46399c9a57380CAS | 21397399PubMed |
[8] V. L. Mejía-Trejo, E. Fregoso-Israel, H. Pfeiffer, Chem. Mater. 2008, 20, 7171.
| Crossref | GoogleScholarGoogle Scholar |
[9] S. Shan, S. Li, Q. Jia, L. Jiang, Y. Wang, J. Peng, Ind. Eng. Chem. Res. 2013, 52, 6941.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntVGjsLc%3D&md5=29f7f95b558c45f4bbd59f8f3dd3bf68CAS |
[10] M. Broda, V. Manovic, E. J. Anthony, C. R. Muller, Environ. Sci. Technol. 2014, 48, 5322.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXltFGlsbs%3D&md5=7b3f87b6a23b454eed931bdd3bca221fCAS | 24678727PubMed |
[11] J. Silvestre-Albero, A. Wahby, A. Sepúlveda-Escribano, M. Martínez-Escandell, K. Kaneko, F. Rodríguez-Reinoso, Chem. Commun. 2011, 47, 6840.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntlagsL0%3D&md5=2c36a0e4042721ff022034584e948978CAS |
[12] S. M. Hong, K. B. Lee, RSC Adv. 2014, 4, 56707.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVCrs73P&md5=8128e84edc998988652de08d1316f9cfCAS |
[13] P. Mishra, S. Mekala, F. Dreisbach, B. Mandal, S. Gumma, Sep. Purif. Technol. 2012, 94, 124.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnvFCqsrg%3D&md5=c2a6c3aca7c29f2b264f0232792bcd68CAS |
[14] H. Wu, Y. S. Chua, V. Krungleviciute, M. Tyagi, P. Chen, T. Yildirim, W. Zhou, J. Am. Chem. Soc. 2013, 135, 10525.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtValsLrL&md5=b6e8bd4652040c54d8ba44a46202fed0CAS | 23808838PubMed |
[15] E. Lopez-Maya, C. Montoro, V. Colombo, E. Barea, J. A. R. Navarro, Adv. Funct. Mater. 2014, 24, 6130.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1amtrbP&md5=cf3dce6361cf32bc33519f7f90aaec85CAS |
[16] R. Poloni, K. Lee, R. F. Berger, B. Smit, J. B. Neaton, J. Phys. Chem. Lett. 2014, 5, 861.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXisFaju7g%3D&md5=1d93b9c0c12bb2a0e45d03e0213829ccCAS |
[17] X. Xu, C. S. Song, J. M. Andresen, B. G. Miller, Energy Fuels 2002, 16, 1463.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xnsl2itLs%3D&md5=d6ea298adcba772f56a6224108b2d001CAS |
[18] L. Y. Zhou, J. Fan, G. K. Cui, X. M. Shang, Q. H. Tang, J. J. Wang, M. H. Fan, Green Chem. 2014, 16, 4009.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVamsr%2FF&md5=16fd87de1a6227f85911716d1cd1e6c8CAS |
[19] Y. Belmabkhout, A. Sayari, Energy Fuels 2010, 24, 5273.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvFKitr8%3D&md5=5c00741884bb50d9072d3456bf91f00cCAS |
[20] S. Choi, M. L. Gray, C. W. Jones, ChemSusChem 2011, 4, 628.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtFyns74%3D&md5=466d67b44bd0457d5e0dd8090f5f0d7eCAS | 21548105PubMed |
[21] J. W. Wei, J. J. Shi, H. Pan, W. Zhao, Q. Ye, Y. Shi, Microporous Mesoporous Mater. 2008, 116, 394.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlSmtrrI&md5=00e65f0ed39ff26d6577faf52556d65dCAS |
[22] M. B. Yue, Y. Chun, Y. Cao, X. Dong, J. H. Zhu, Adv. Funct. Mater. 2006, 16, 1717.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVSktL7E&md5=5445008777743bf3e2ab26838839129eCAS |
[23] W. J. Zhang, H. Wang, J. Y. Han, Z. Q. Song, Appl. Surf. Sci. 2012, 258, 6158.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvVGrsrk%3D&md5=7adb82799152ea24a1ed7ddc23bed2e1CAS |
[24] R. Srivastava, D. Srinivas, P. Ratnasamy, Microporous Mesoporous Mater. 2006, 90, 314.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvVSmtrc%3D&md5=89e0dcae533938c9a2776ca3d550ef3dCAS |
[25] Y. Kuwahara, D. Y. Kang, J. R. Copeland, N. A. Brunelli, S. A. Didas, P. Bollini, C. Sievers, T. Kamegawa, H. Yamashita, C. W. Jones, J. Am. Chem. Soc. 2012, 134, 10757.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xos1Smtrc%3D&md5=a4893ea77037e6ff9598d50d0425ce55CAS | 22703027PubMed |
[26] Y. Kuwahara, D. Y. Kang, J. R. Copeland, P. Bollini, C. Sievers, T. Kamegawa, H. Yamashita, C. W. Jones, Chem. – Eur. J. 2012, 18, 16649.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslSrsLjJ&md5=487a6db0ffe58ba7e838abcf5f829cd0CAS | 23165918PubMed |
[27] X. Zhao, X. Hu, G. Hu, R. Bai, W. Dai, M. Fan, M. Luo, J. Mater. Chem. A 2013, 1, 6208.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmvFWjtbc%3D&md5=9d0496aacd1c91678b48ddc5df89d330CAS |
[28] A. Olea, E. S. Sanz-Pérez, A. Arencibia, R. Sanz, G. Calleja, Adsorption 2013, 19, 589.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlslSitrs%3D&md5=eab6a36389d0a5cca84dd0c879d33762CAS |
[29] J. P. E. Harlick, A. Sayari, Ind. Eng. Chem. Res. 2007, 46, 446.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlaksrfL&md5=cdafac5a3fa475ec3704f2acd1687af2CAS |
[30] M. Gray, K. Champagne, D. Fauth, J. Baltrus, H. Pennline, Int. J. Greenhouse Gas Control 2008, 2, 3.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXivFGkt74%3D&md5=e1e6a4cecea75e5e070c3c9e79c1c1f1CAS |
[31] M. Kruk, M. Jaroniec, C. H. Ko, R. Ryoo, Chem. Mater. 2000, 12, 1961.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktVGlsrc%3D&md5=ccc3be9f52302c1703bbd0dd2ca5cc1eCAS |
[32] R. Ryoo, C. H. Ko, M. Kruk, V. Antochshuk, M. Jaroniec, J. Phys. Chem. B 2000, 104, 11465.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXns1Ogsrg%3D&md5=1931cb7469d35849930a366bdcdf0c36CAS |
[33] F. Su, C. Lu, Energy Environ. Sci. 2012, 5, 9021.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhtlyqs7jF&md5=51b780e16717fc697f25bd08ed4482bfCAS |
[34] E. R. Monazam, L. J. Shadle, D. C. Miller, H. W. Pennline, D. J. Fauth, J. S. Hoffman, M. L. Gray, AIChE J. 2013, 59, 923.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVyjsrvP&md5=090106f51a6e1551f9cbb9437f1cee62CAS |
[35] Z. Bacsik, N. Ahlsten, A. Ziadi, G. Zhao, A. E. Garcia-Bennett, B. Martin-Matute, N. Hedin, Langmuir 2011, 27, 11118.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvFCiurk%3D&md5=bd1cb9d27f792fa5315f665b6097dd70CAS | 21774480PubMed |
[36] Y. Liao, S. W. Cao, Y. P. Yuan, Q. Gu, Z. Y. Zhang, C. Xue, Chem. – Eur. J. 2014, 20, 10220.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFyqsbrI&md5=244117296b5869ba8b196dd510c1977dCAS | 25042886PubMed |
[37] C. L. Tseng, Y. K. Chen, S. H. Wang, Z. W. Peng, J. L. Lin, J. Phys. Chem. C 2010, 114, 11835.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXns1Cnsbs%3D&md5=d45c748bb60c26b94441ac8a15fb807dCAS |
[38] Y. C. Chien, H. Paul Wang, S. H. Liu, T. L. Hsiung, H. S. Tai, C. Y. Peng, J. Hazard. Mater. 2008, 151, 461.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlGgu7Y%3D&md5=051c46a9dc0a7eaac63ef6e0e33f6101CAS | 17659831PubMed |
[39] Z. H. Zhang, X. L. Ma, D. X. Wang, C. S. Song, Y. G. Wang, AIChE J. 2012, 58, 2495.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVyrurfM&md5=3abb0a3e8f2e2993c96c9f9e365ff2d6CAS |