Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Hybrid Pyrazolyl-1,2,3-Triazolyl Tripodal Tetraamine Ligands: Click Synthesis and Cobalt(iii) Complexes

John R. Cubanski A , Matthew E. Reish A B , Allan G. Blackman A C , Peter J. Steel D , Keith C. Gordon A B , David A. McMorran A E and James D. Crowley A E
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand.

B MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand.

C Current Address: School of Applied Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand.

D Department of Chemistry, University of Canterbury, Christchurch, New Zealand.

E Corresponding authors. Email: jcrowley@chemistry.otago.ac.nz; davidm@chemistry.otago.ac.nz

Australian Journal of Chemistry 68(7) 1160-1170 https://doi.org/10.1071/CH14700
Submitted: 4 December 2014  Accepted: 17 December 2014   Published: 31 March 2015

Abstract

A family of tripodal tetraamine ligands incorporating two pyrazolyl and one 1,2,3-triazolyl donor arm have been synthesized in modest-to-excellent yields (42–90 %) using the copper(i)-catalyzed azide–alkyne cycloaddition (CuAAC) reaction. Mono-, bis-, and tris-tripodal ligand scaffolds were readily generated using this method. The coordination chemistry of the ligands with cobalt(iii) ions has been studied, and cobalt(iii) carbonato complexes of the ligands have been isolated and characterized spectroscopically and crystallographically. X-ray crystallography and NMR spectroscopy of the mono-metallic complexes showed that racemic mixtures of the cis-isomer are formed selectively. The di- and tri-metallic systems could not be crystallized, but NMR spectroscopy indicates that these compounds were isolated as mixtures of stereoisomers.


References

[1]  (a) C. W. Tornøe, C. Christensen, M. Meldal, J. Org. Chem. 2002, 67, 3057.
         | Crossref | GoogleScholarGoogle Scholar | 11975567PubMed |
      (b) V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew. Chem., Int. Ed. 2002, 41, 2596.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) B. Schulze, U. S. Schubert, Chem. Soc. Rev. 2014, 43, 2522.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXks12hsLw%3D&md5=118b3c4e431fc9471a5d0ccd5d34937eCAS | 24492745PubMed |
      (b) J. D. Crowley, D. A. McMorran, Top. Heterocycl. Chem. 2012, 28, 31.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) D. Schweinfurth, N. Deibel, F. Weisser, B. Sarkar, Nachr. Chem. 2011, 59, 937.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) H. Struthers, T. L. Mindt, R. Schibli, Dalton Trans. 2010, 39, 675.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) D. Schweinfurth, J. Klein, S. Hohloch, S. Dechert, S. Demeshko, F. Meyer, B. Sarkar, Dalton Trans. 2013, 42, 6944.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsVCisLw%3D&md5=da8a2a8060513d7680f80684eae1f764CAS | 23508268PubMed |
      (b) D. Schweinfurth, J. Krzystek, I. Schapiro, S. Demeshko, J. Klein, J. Telser, A. Ozarowski, C.-Y. Su, F. Meyer, M. Atanasov, F. Neese, B. Sarkar, Inorg. Chem. 2013, 52, 6880.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) T. U. Connell, C. Schieber, I. P. Silvestri, J. M. White, S. J. Williams, P. S. Donnelly, Inorg. Chem. 2014, 53, 6503.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) H. Ohi, M. Shimizu, M. Obata, T. Funabiki, S. Yano, Acta Crystallogr., Sect. E:Struct. Rep. Online 2008, 64, m1256.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) F. Weisser, S. Hohloch, S. Plebst, D. Schweinfurth, B. Sarkar, Chem. – Eur. J. 2014, 20, 781.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXkvF2huw%3D%3D&md5=d1ff44082fdf30497a79eb55a396cd7fCAS | 24403171PubMed |
      (b) B. Stefane, F. Perdih, A. Visnjevac, F. Pozgan, New J. Chem. 2015, 39, 566.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  (a) D. Schweinfurth, F. Weisser, D. Bubrin, L. Bogani, B. Sarkar, Inorg. Chem. 2011, 50, 6114.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnt1Ggs7k%3D&md5=267d2aee196f26a3edcb9e6200262385CAS | 21657207PubMed |
      (b) D. Schweinfurth, S. Demeshko, S. Hohloch, M. Steinmetz, J. G. Brandenburg, S. Dechert, F. Meyer, S. Grimme, B. Sarkar, Inorg. Chem. 2014, 53, 8203.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  (a) T. R. Chan, R. Hilgraf, K. B. Sharpless, V. V. Fokin, Org. Lett. 2004, 6, 2853.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtVOju7o%3D&md5=ef907ed89e7f658883c63fdc59ac42b7CAS | 15330631PubMed |
      (b) P. S. Donnelly, S. D. Zanatta, S. C. Zammit, J. M. White, S. J. Williams, Chem. Commun. 2008, 2459.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) V. Hong, A. K. Udit, R. A. Evans, M. G. Finn, ChemBioChem 2008, 9, 1481.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) C. Orain, N. Le Poul, A. Gomila, J.-M. Kerbaol, N. Cosquer, O. Reinaud, F. Conan, Y. Le Mest, Chem. – Eur. J. 2012, 18, 594.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) C. Orain, P. Le Poul, Y. Le Mest, N. Le Poul, J. Electroanal. Chem. 2013, 710, 48.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) D. Schweinfurth, S. Demeshko, M. M. Khusniyarov, S. Dechert, V. Gurram, M. R. Buchmeiser, F. Meyer, B. Sarkar, Inorg. Chem. 2012, 51, 7592.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) J. Nakazawa, A. Yata, T. Hori, T. D. P. Stack, Y. Naruta, S. Hikichi, Chem. Lett. 2013, 42, 1197.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) J. Nakazawa, T. Hori, T. D. P. Stack, S. Hikichi, Chem. – Asian J. 2013, 8, 1191.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) L. Eltepu, M. Jayaraman, K. G. Rajeev, M. Manoharan, Chem. Commun. 2013, 49, 184.
         | Crossref | GoogleScholarGoogle Scholar |
      (j) P. Sangtrirutnugul, P. Maisopa, L. Chaicharoenwimolkul, A. Sunsin, E. Somsook, V. Reutrakul, J. Appl. Polym. Sci. 2013, 127, 2757.
         | Crossref | GoogleScholarGoogle Scholar |
      (k) N. Ségaud, J.-N. Rebilly, K. Sénéchal-David, R. Guillot, L. Billon, J.-P. Baltaze, J. Farjon, O. Reinaud, F. Banse, Inorg. Chem. 2013, 52, 691.
         | Crossref | GoogleScholarGoogle Scholar |
      (l) B. Xu, W. Zhong, Z. Wei, H. Wang, J. Liu, L. Wu, Y. Feng, X. Liu, Dalton Trans. 2014, 43, 15337.
         | Crossref | GoogleScholarGoogle Scholar |
      (m) G.-C. Kuang, H. A. Michaels, J. T. Simmons, R. J. Clark, L. Zhu, J. Org. Chem. 2010, 75, 6540.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  (a) J. Rosenthal, S. J. Lippard, J. Am. Chem. Soc. 2010, 132, 5536.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktVeqtrw%3D&md5=2e5fb66e7f1d697dc80e3bee8d14de5bCAS | 20355724PubMed |
      (b) Y. Zhou, K. Liu, J.-Y. Li, Y. Fang, T.-C. Zhao, C. Yao, Org. Lett. 2011, 13, 1290.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J.-H. Ye, L. Duan, C. Yan, W. Zhang, W. He, Tetrahedron Lett. 2012, 53, 593.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) S. Huang, R. J. Clark, L. Zhu, Org. Lett. 2007, 9, 4999.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) H. A. Michaels, C. S. Murphy, R. J. Clark, M. W. Davidson, L. Zhu, Inorg. Chem. 2010, 49, 4278.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) J. T. Simmons, J. R. Allen, D. R. Morris, R. J. Clark, C. W. Levenson, M. W. Davidson, L. Zhu, Inorg. Chem. 2013, 52, 5838.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  (a) E. Benoist, Y. Coulais, M. Almant, J. Kovensky, V. Moreau, D. Lesur, M. Artigau, C. Picard, C. Galaup, S. G. Gouin, Carbohydr. Res. 2011, 346, 26.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFCqsr7M&md5=024bdd9c6a3b1ae40b08856f4f5b8474CAS | 21081225PubMed |
      (b) B. B. Kasten, X. Ma, H. Liu, T. R. Hayes, C. L. Barnes, S. Qi, K. Cheng, S. C. Bottorff, W. S. Slocumb, J. Wang, Z. Cheng, P. D. Benny, Bioconjugate Chem. 2014, 25, 579.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  (a) J. R. Cubanski, S. A. Cameron, J. D. Crowley, A. G. Blackman, Dalton Trans. 2013, 42, 2174.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXosVCnsg%3D%3D&md5=4b58b24df11b44b32b77e0a47e55ebcaCAS | 23192397PubMed |
      (b) L. F. McClintock, P. Bagaria, H. G. Kjaergaard, A. G. Blackman, Polyhedron 2009, 28, 1459.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) L. F. McClintock, G. Cavigliasso, R. Stranger, A. G. Blackman, Dalton Trans. 2008, 4984.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) G. Cavigliasso, R. Stranger, L. F. McClintock, S. E. Cheyne, P. M. Jaffray, K. E. Baxter, A. G. Blackman, Dalton Trans. 2008, 2433.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) A. G. Blackman, Eur. J. Inorg. Chem. 2008, 2633.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) A. J. Clarkson, A. G. Blackman, Polyhedron 2006, 25, 373.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) S. E. Cheyne, L. F. McClintock, A. G. Blackman, Inorg. Chem. 2006, 45, 2610.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) P. M. Jaffray, L. F. McClintock, K. E. Baxter, A. G. Blackman, Inorg. Chem. 2005, 44, 4215.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) A. G. Blackman, Polyhedron 2005, 24, 1.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  (a) A. Noor, G. S. Huff, S. V. Kumar, J. E. M. Lewis, B. M. Paterson, C. Schieber, P. S. Donnelly, H. J. L. Brooks, K. C. Gordon, S. C. Moratti, J. D. Crowley, Organometallics 2014, 33, 7031.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFWjs77J&md5=e2a78c53bb2b347b67959ba2aba36518CAS |
      (b) J. R. Wright, P. C. Young, N. T. Lucas, A.-L. Lee, J. D. Crowley, Organometallics 2013, 32, 7065.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. K. Vellas, J. E. M. Lewis, M. Shankar, A. Sagatova, J. D. A. Tyndall, B. C. Monk, C. M. Fitchett, L. R. Hanton, J. D. Crowley, Molecules 2013, 18, 6383.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) T. Y. Kim, A. B. S. Elliott, K. J. Shaffer, C. J. McAdam, K. C. Gordon, J. D. Crowley, Polyhedron 2013, 52, 1391.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) C. B. Anderson, A. B. S. Elliott, C. J. McAdam, K. C. Gordon, J. D. Crowley, Organometallics 2013, 32, 788.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) A. Noor, J. E. M. Lewis, S. A. Cameron, S. C. Moratti, J. D. Crowley, Supramol. Chem. 2012, 24, 492.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) C. B. Anderson, A. B. S. Elliott, J. E. M. Lewis, C. J. McAdam, K. C. Gordon, J. D. Crowley, Dalton Trans. 2012, 41, 14625.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) S. O. Scott, E. L. Gavey, S. J. Lind, K. C. Gordon, J. D. Crowley, Dalton Trans. 2011, 40, 12117.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) K. J. Kilpin, U. S. D. Paul, A.-L. Lee, J. D. Crowley, Chem. Commun. 2011, 47, 328.
         | Crossref | GoogleScholarGoogle Scholar |
      (j) K. J. Kilpin, E. L. Gavey, C. J. McAdam, C. B. Anderson, S. J. Lind, C. C. Keep, K. C. Gordon, J. D. Crowley, Inorg. Chem. 2011, 50, 6334.
         | Crossref | GoogleScholarGoogle Scholar |
      (k) K. J. Kilpin, J. D. Crowley, Polyhedron 2010, 29, 3111.
         | Crossref | GoogleScholarGoogle Scholar |
      (l) M. L. Gower, J. D. Crowley, Dalton Trans. 2010, 39, 2371.
         | Crossref | GoogleScholarGoogle Scholar |
      (m) J. D. Crowley, E. L. Gavey, Dalton Trans. 2010, 39, 4035.
         | Crossref | GoogleScholarGoogle Scholar |
      (n) J. D. Crowley, P. H. Bandeen, L. R. Hanton, Polyhedron 2010, 29, 70.
         | Crossref | GoogleScholarGoogle Scholar |
      (o) J. D. Crowley, P. H. Bandeen, Dalton Trans. 2010, 39, 612.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  X. You, Z. Wei, Inorg. Chim. Acta 2014, 423, 332.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFalsL%2FK&md5=fc95a187bcc8da9fdc454cd9c72408ecCAS |

[12]  I. Stengel, A. Mishra, N. Pootrakulchote, S.-J. Moon, S. M. Zakeeruddin, M. Gratzel, P. Bauerle, J. Mater. Chem. 2011, 21, 3726.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisleiuro%3D&md5=0503b0463eec2ed6066c31575dd858f9CAS |

[13]  (a) B. Chattopadhyay, C. I. R. Vera, S. Chuprakov, V. Gevorgyan, Org. Lett. 2010, 12, 2166.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksFWju7Y%3D&md5=281685b7b4a4ce3860f022e319505c47CAS | 20380424PubMed |
      (b) Q. Zhang, X. Wang, C. Cheng, R. Zhu, N. Liu, Y. Hu, Org. Biomol. Chem. 2012, 10, 2847.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. Jindabot, K. Teerachanan, P. Thongkam, S. Kiatisevi, T. Khamnaen, P. Phiriyawirut, S. Charoenchaidet, T. Sooksimuang, P. Kongsaeree, P. Sangtrirutnugul, J. Organomet. Chem. 2014, 750, 35.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  Due to its functional group tolerance, the CuAAC method is quite general. Using the same methodology, we have been able to synthesize the dimethylpyrazole analogue of 2a; see Supplementary Material.

[15]  This method gave complex 3b in very low yield (7 %), and thus we used an alternative route to synthesize the compound. Ligand 2b and cobalt(ii) perchlorate hexahydrate were combined in CH3CN, followed by addition of 30 % H2O2 and NaHCO3. Stirring overnight gave a red solution, which was worked up as described above, giving complex 3b in modest yield (42 %).

[16]  K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds 2008, pp. 1–273 (John Wiley & Sons, Inc.: Weinheim).

[17]     (a) The ligand 2c features a relatively rare inverse pyridyl-1,2,3-triazole bidentate (for examples see refs 17b–f) chelating site in addition to its tripodal pocket. Despite this, and perhaps predictably, complexation occurs in the tetradentate site. Preliminary efforts to coordinate a second metal ion to the empty bidentate site have been unsuccessful. Molecular modelling suggests that a steric clash between the carbonato ligand and the incoming metal ion may hinder the formation of these types of complexes.
      (b) W. S. Brotherton, H. A. Michaels, J. T. Simmons, R. J. Clark, N. S. Dalal, L. Zhu, Org. Lett. 2009, 11, 4954.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) D. Urankar, B. Pinter, A. Pevec, F. De Proft, I. Turel, J. Kosmrlj, Inorg. Chem. 2010, 49, 4820.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) S. Clède, F. Lambert, R. Saint-Fort, M.-A. Plamont, H. Bertrand, A. Vessieres, C. Policar, Chem. – Eur. J. 2014, 20, 8714.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) S. Jindabot, K. Teerachanan, P. Thongkam, S. Kiatisevi, T. Khamnaen, P. Phiriyawirut, S. Charoenchaidet, T. Sooksimuang, P. Kongsaeree, P. Sangtrirutnugul, J. Organomet. Chem. 2014, 750, 35.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) A. Bolje, D. Urankar, J. Kosmrlj, Eur. J. Org. Chem. 2014, 2014, 8167.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  A. B. P. Lever, Studies in Physical and Theoretical Chemistry 1984, pp. 481–571 (Elsevier: Amsterdam).

[19]  B. Liu, X. Liu, C. Chen, C. Chen, W. Chen, Organometallics 2012, 31, 282.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  (a) D. Li, R. Clérac, O. Roubeau, E. Harté, C. Mathonière, R. Le Bris, S. M. Holmes, J. Am. Chem. Soc. 2008, 130, 252.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVWgurrP&md5=efce3f792c8f0d45d393bb3f74749ff1CAS | 18076169PubMed |
      (b) O. J. Curnow, B. K. Nicholson, J. Organomet. Chem. 1984, 267, 257.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  (a) Y. I. Cho, D. M. Joseph, M. J. Rose, Inorg. Chem. 2013, 52, 13298.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslyms73P&md5=ab8d5c47224245853b0f118c29f47af1CAS | 24228842PubMed |
      (b) E. Bill, E. Bothe, P. Chaudhuri, K. Chlopek, D. Herebian, S. Kokatam, K. Ray, T. Weyhermuller, F. Neese, K. Wieghardt, Chem. – Eur. J. 2005, 11, 204.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  A. L. Gavrilova, B. Bosnich, Chem. Rev. 2004, 104, 349.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtV2ltQ%3D%3D&md5=270389bf7a10949129b982d6eb0bd95aCAS | 14871128PubMed |

[23]  (a) R. M. Clarke, T. Storr, Dalton Trans. 2014, 43, 9380.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpsVSisb0%3D&md5=ec39ecddf9df7516775a1d0ca0ff558dCAS | 24722684PubMed |
      (b) M. Shibasaki, M. Kanai, S. Matsunaga, N. Kumagai, Acc. Chem. Res. 2009, 42, 1117.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. Shibasaki, M. Kanai, S. Matsunaga, N. Kumagai, Top. Organomet. Chem. 2011, 37, 1.

[24]  (a) A. K. Renfrew, N. S. Bryce, T. W. Hambley, Chem. Sci. 2013, 4, 3731.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFOks7bJ&md5=e4a087c253025b6ff9cd70d2dbd8f593CAS |
      (b) N. Yamamoto, A. K. Renfrew, B. J. Kim, N. S. Bryce, T. W. Hambley, J. Med. Chem. 2012, 55, 11013.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) P. D. Bonnitcha, B. J. Kim, R. K. Hocking, J. K. Clegg, P. Turner, S. M. Neville, T. W. Hambley, Dalton Trans. 2012, 41, 11293.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) B. J. Kim, T. W. Hambley, N. S. Bryce, Chem. Sci. 2011, 2, 2135.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) N. Yamamoto, S. Danos, P. D. Bonnitcha, T. W. Failes, E. J. New, T. W. Hambley, J. Biol. Inorg. Chem. 2008, 13, 861.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) M. D. Hall, T. W. Failes, N. Yamamoto, T. W. Hambley, Dalton Trans. 2007, 3983.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  (a) Y. Mulyana, K. G. Alley, K. M. Davies, B. F. Abrahams, B. Moubaraki, K. S. Murray, C. Boskovic, Dalton Trans. 2014, 43, 2499.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmt1ynuw%3D%3D&md5=3134b5ea1d53930dbd5e7f3c15e28dd7CAS | 24306162PubMed |
      (b) K. G. Alley, G. Poneti, P. S. D. Robinson, A. Nafady, B. Moubaraki, J. B. Aitken, S. C. Drew, C. Ritchie, B. F. Abrahams, R. K. Hocking, K. S. Murray, A. M. Bond, H. H. Harris, L. Sorace, C. Boskovic, J. Am. Chem. Soc. 2013, 135, 8304.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) K. G. Alley, G. Poneti, J. B. Aitken, R. K. Hocking, B. Moubaraki, K. S. Murray, B. F. Abrahams, H. H. Harris, L. Sorace, C. Boskovic, Inorg. Chem. 2012, 51, 3944.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  SAINT 2001 (Bruker AXS Inc.: Madison, WI).

[27]  SADABS: Program for Absorption Correction 1996 (University of Goettingen: Goettingen, Germany).

[28]  G. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, A64, 112.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  L. Farrugia, J. Appl. Crystallogr. 1999, 32, 837.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlsVSlurk%3D&md5=de07e79e3cae11c3ba375295472c2b7dCAS |

[30]  CrysAlisPRO 2011 (Oxford Diffraction/Agilent Technologies UK Ltd: Yarnton, England.)

[31]  O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsFSnsbg%3D&md5=742d0b697b608c74c3b4baa83bb3e93bCAS |