Synthesis and Characterization of SmIII and EuIII Coordination Compounds of 3-(2-Pyridyl)-1-pyrazolyl Acetic Acid
Jian Hua Zou A , Qiao Liu A , Jia Fang Dong A , Meng Jie Cao A , Qian Qian Wu A , Qiu Yan Yue A , Qiao Yun Li A B and Gao Wen Yang A BA Department of Chemistry and Material Engineering, Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu, 215500, China.
B Corresponding authors. Email: liqiaoyun61@126.com; ygwsx@126.com
Australian Journal of Chemistry 68(7) 1152-1159 https://doi.org/10.1071/CH14501
Submitted: 9 August 2014 Accepted: 11 December 2014 Published: 21 April 2015
Abstract
Two novel coordination compounds, namely, [Sm2(pypza)2(H2O)10]Cl4·H2O (1) and [Eu(pypza)(C2O4)] (2), where pypza = 3-(2-pyridyl)-1-pyrazolyl acetato, have been synthesized under hydrothermal conditions. These compounds were characterized by elemental analysis, infrared spectroscopy, and single-crystal X-ray diffraction. The X-ray diffraction analysis reveals that compound 1 displays double one-dimensional chains, whereas 2 shows a two-dimensional layer structure via the bridging pypza and oxalate (C2O42–) which may arise from the oxidation of hydroacetic acid through the decomposition and hydrolysis of Hpypza by means of the cleavage of the C–N bond between the carboxylate group and the pyrazolyl ring. Compounds 1 and 2 show three-dimensional networks by hydrogen bonding interactions. Furthermore, the luminescence properties of 1 and 2 have also been investigated at room temperature in the solid state.
References
[1] (a) Y.-F. Han, L.-S. Fu, L. Mafra, F.-N. Shi, J. Solid State Chem. 2012, 186, 165.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtV2ntL4%3D&md5=e3a0cb31df551fc9cf7499d7af8caf77CAS |
(b) Q.-Y. Li, G.-W. Yang, X.-Y. Tang, Y.-S. Ma, W. Yao, F. Zhou, J. Chen, H. Zhou, Cryst. Growth Des. 2010, 10, 165.
| Crossref | GoogleScholarGoogle Scholar |
(c) C.-B. Liu, H.-L. Wen, S.-S. Tan, X.-G. Yi, J. Mol. Struct. 2008, 879, 25.
| Crossref | GoogleScholarGoogle Scholar |
[2] M.-B. Zhang, J. Zhang, S.-T. Zheng, G.-Y. Yang, Angew. Chem., Int. Ed. 2005, 44, 1385.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitVSht7o%3D&md5=f15b7db65dd84ec34f0cb749c113003aCAS |
[3] (a) P.-F. Shi, Z. Chen, G. Xiong, B. Shen, J.-Z. Sun, P. Cheng, B. Zha, Cryst. Growth Des. 2012, 12, 5203.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVyks7jE&md5=e68cf72ec0dd6c459298347ae83aeef7CAS |
(b) J. Xia, B. Zhao, H.-S. Wang, W. Shi, Y. Ma, H.-B. Song, P. Cheng, D.-Z. Liao, S.-P. Yan, Inorg. Chem. 2007, 46, 3450.
| Crossref | GoogleScholarGoogle Scholar |
(c) P. Wang, R.-Q. Fan, Y.-L. Yang, X.-R. Liu, W.-W. Cao, B. Yang, J. Solid State Chem. 2012, 196, 441.
| Crossref | GoogleScholarGoogle Scholar |
(d) S.-F. Weng, Y.-H. Wang, C.-S. Lee, J. Solid State Chem. 2012, 188, 77.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) J.-H. Zou, D.-L. Zhu, H. Tian, F.-F. Li, F.-F. Zhang, G.-W. Yang, Q.-Y. Li, Y.-X. Miao, Inorg. Chim. Acta 2014, 423, 87.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1KltbnL&md5=8170206eab67d922ff4b6788c873e205CAS |
(b) J.-H. Zou, D.-L. Zhu, F.-F. Li, F.-S. Li, H. Wu, Q.-Y. Li, G.-W. Yang, P. Zhang, Y.-X. Miao, J. Xie, Z. Anorg. Allg. Chem. 2014, 640, 2226.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) X.-M. Zhang, Coord. Chem. Rev. 2005, 249, 1201.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXivVKntro%3D&md5=56e52d4bf67e923ef402d95c810ec25cCAS |
(b) K.-E. Knope, C.-L. Cahill, Inorg. Chem. 2007, 46, 6607.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. Rodríguez-Diéguez, E. Colacio, Chem. Commun. 2006, 4140.
| Crossref | GoogleScholarGoogle Scholar |
(d) D.-F. Weng, W.-H. Mu, X.-J. Zheng, D.-C. Fang, L.-P. Jin, Inorg. Chem. 2008, 47, 1249.
| Crossref | GoogleScholarGoogle Scholar |
(e) P. Thuéry, CrystEngComm 2010, 12, 1905.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) D.-Y. Chen, J.-H. Zou, W.-X. Li, B. Xu, Q.-Y. Li, G.-W. Yang, J. Wang, Y.-M. Ding, Y. Zhang, X.-F. Shen, Inorg. Chem. Commun. 2014, 40, 35.
| Crossref | GoogleScholarGoogle Scholar |
(b) G.-W. Yang, D.-Y. Chen, C. Zhai, X.-Y. Tang, Q.-Y. Li, F. Zhou, Z.-F. Miao, J.-N. Jin, H.-D. Ding, Inorg. Chem. Commun. 2011, 14, 913.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) Q.-Y. Li, M.-H. He, Z.-D. Shen, G.-W. Yang, Z.-Y. Yuan, Inorg. Chem. Commun. 2012, 20, 214.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnslGqurg%3D&md5=0b1040e330a57bc817a1812133d6e1f6CAS |
(b) J. Yang, L. Shen, G.-W. Yang, Q.-Y. Li, L.-L. Zhu, W. Shen, C. Ji, X.-F. Shen, Inorg. Chim. Acta 2012, 392, 25.
| Crossref | GoogleScholarGoogle Scholar |
[8] Rigaku CrystalClear 2005 (Rigaku Corporation: Tokyo, Japan).
[9] G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, A64, 112.
| Crossref | GoogleScholarGoogle Scholar |
[10] H. Deng, Y.-C. Qiu, Y.-H. Li, Z.-H. Liu, O. Guillou, Inorg. Chim. Acta 2009, 362, 1797.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkslKrtb8%3D&md5=e9266b0d31527304b5151fe13276f6adCAS |
[11] (a) H. S. Huh, S. W. Lee, Bull. Korean Chem. Soc. 2006, 27, 1839.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhtlemsb3E&md5=d2a546845a953feb4f8e3e0bef267d4cCAS |
(b) C.-E. Rowland, C.-L. Cahill, Inorg. Chem. 2010, 49, 6716.
| Crossref | GoogleScholarGoogle Scholar |
(c) M.-B. Andrews, C.-L. Cahill, CrystEngComm 2011, 13, 7068.
| Crossref | GoogleScholarGoogle Scholar |
(d) K.-E. Knope, H. Kimura, Y. Yasaka, M. Nakahara, M.-B. Andrews, C.-L. Cahill, Inorg. Chem. 2012, 51, 3883.
| Crossref | GoogleScholarGoogle Scholar |
[12] (a) M.-F. Wu, F.-K. Zheng, G. Xu, A.-Q. Wu, Y. Li, H.-F. Chen, S.-P. Guo, F. Chen, Z.-F. Liu, G.-C. Guo, J.-S. Huang, Inorg. Chem. Commun. 2010, 13, 250.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvFSjtA%3D%3D&md5=d61bffb4e0500c726ee4e38ea2969577CAS |
(b) X. Li, B.-L. Wu, C.-Y. Niu, Y.-Y. Niu, H.-Y. Zhang, Cryst. Growth Des. 2009, 9, 3423.
| Crossref | GoogleScholarGoogle Scholar |
(c) M.-W. Perkovic, Inorg. Chem. 2000, 39, 4962.
| Crossref | GoogleScholarGoogle Scholar |
[13] (a) W.-H. Ma, J. Li, X. Tao, J. He, Y.-M. Xu, J.-C. Yu, J.-C. Zhao, Angew. Chem., Int. Ed. 2003, 42, 1029.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitlOit78%3D&md5=8c71b067582c35bf43c3bf2406e8ac32CAS |
(b) S.-L. Zheng, J.-P. Zhang, W.-T. Wong, X.-M. Chen, J. Am. Chem. Soc. 2003, 125, 6882.
| Crossref | GoogleScholarGoogle Scholar |
[14] (a) A.-F. Kirby, D. Foster, F.-S. Richardson, Chem. Phys. Lett. 1983, 95, 507.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXitVKrtb0%3D&md5=58f1231b1fb15d58128591ea85fa91bfCAS |
(b) J. Xia, B. Zhao, H.-S. Wang, W. Shi, Y. Ma, H.-B. Song, P. Cheng, D.-Z. Liao, S.-P. Yan, Inorg. Chem. 2007, 46, 3450.
| Crossref | GoogleScholarGoogle Scholar |