Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Zero-Valent Iron Nanoparticles (NZVI) Supported by Kaolinite for CuII and NiII Ion Removal by Adsorption: Kinetics, Thermodynamics, and Mechanism

Jiao Wang A B , Guijian Liu A B C , Tanfu Li A , Chuncai Zhou A and Cuicui Qi A
+ Author Affiliations
- Author Affiliations

A CAS Key Laboratory of Crust–Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China.

B State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi’an, Shaanxi 710075, China.

C Corresponding author. Email: lgj@ustc.edu.cn

Australian Journal of Chemistry 68(8) 1305-1315 https://doi.org/10.1071/CH14675
Submitted: 25 November 2014  Accepted: 8 February 2015   Published: 19 March 2015

Abstract

This research concerns the adsorption of CuII and NiII using zero-valent iron nanoparticles supported by kaolinite (nZVI-Kaolinite). The characterization studies indicated that the surface of kaolinite or the kaolinite fragments were filled with nZVI particles. The kinetics of CuII and NiII adsorption were evaluated for various contact times. The adsorption of CuII and NiII at different initial concentrations was examined by injecting 0.5 g of adsorbent to achieve equilibrium. The adsorption of CuII and NiII was a chemisorption process, which fitted well with the Freundlich and the Temkin isotherm models. The low value of activation energy suggests the occurrence of a redox process and both physical and chemical processes for CuII and NiII adsorption respectively. The negative values for the Gibbs free energy (ΔG0) and enthalpy of adsorption (ΔH0) revealed that the adsorption process was spontaneous and exothermic. Both surface diffusion and pore diffusion were involved in the rate-limiting step. The possible removal mechanisms involved redox, adsorption, precipitation, and co-precipitation, depending on the adsorption process studied (CuII or NiII adsorption).


References

[1]  K. G. Bhattacharyya, S. S. Gupta, Chem. Eng. J. 2008, 136, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVOis7vL&md5=663b8624c8eb4feacaa790cfd3534e42CAS |

[2]  N. Efecan, Characterization of the Adsorption Behaviour of Aqueous Cd(II) and Ni(II) Ions on Nanoparticles of Zero-Valent Iron 2008, Master’s thesis, İzmir Institute of Technology, Turkey, 41–42.

[3]  D. O’Carroll, B. Sleep, M. Krol, H. Boparai, C. Kocur, Adv. Water Resour. 2013, 51, 104.
         | 1:CAS:528:DC%2BC3sXhslajsrk%3D&md5=94cedb72a818e527d7cf2811c5ecbe37CAS |

[4]  C. Y. Hu, S. L. Lo, Y. H. Liou, Y. W. Hsu, K. Shih, C. J. Lin, Water Res. 2010, 44, 3101.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsVKhurY%3D&md5=b23812dd65b143a85492f25e466e52e1CAS | 20350740PubMed |

[5]  X. Q. Li, W. X. Zhang, Langmuir 2006, 22, 4638.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjt1CmtL0%3D&md5=10b10bda265d460a1a555b5c15b0c14bCAS | 16649775PubMed |

[6]  B. Yu, Y. Zhang, A. Shukla, S. S. Shukla, K. L. Dorris, J. Hazard. Mater. 2000, 80, 33.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotVensrg%3D&md5=e97291905121b4516ad3cfbf036bfcc7CAS | 11080567PubMed |

[7]  Z. Aksu, I. A. Isoglu, Process Biochem. 2005, 40, 3031.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsVOmtLY%3D&md5=92eee336b3174046e88423931eec3fa8CAS |

[8]  C. S. Zhu, L. P. Wang, W. B. Chen, J. Hazard. Mater. 2009, 168, 739.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnslKhtro%3D&md5=1e5a5ae7be1feb80a25052d56e0bfe30CAS | 19297086PubMed |

[9]  A. K. Goswami, S. J. Kulkarni, S. K. Dharmadhikari, M. Phutke, Int. J. Sci., Eng. Technol. Res. (IJSETR) 2013, 2, 1356.

[10]  WHO (World Health Organization), Guidelines for Drinking Water Quality–1, Recommendations, 4th edn 2011 (World Health Organization: Geneva).

[11]  M. Revathi, M. Saravanan, A. B. Chiya, M. Velan, Clean: Soil, Air, Water 2012, 40, 66.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVGrt7rM&md5=cacd55c58b62db3430700a729294a49eCAS |

[12]  S. Ahmady–Asbchin, N. Jafari, Water Sci. Technol. 2013, 68, 1384.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVamurzN&md5=06ede81e164b04b67c0e5a48ab10736cCAS | 24056438PubMed |

[13]  S. L. Li, W. Wang, W. L. Yan, W. X. Zhang, Environ. Sci.: Processes Impacts 2014, 16, 524.
         | 1:CAS:528:DC%2BC2cXjt1amtrc%3D&md5=979e6148b4eba43c077476bd7cfe4eb3CAS |

[14]  J. G. Yu, X. H. Zhao, L. Y. Yu, F. P. Jiao, J. H. Jiang, X. Q. Chen, J. Radioanal. Nucl. Chem. 2014, 299, 1155.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsleksL%2FF&md5=cfe62928f4f637753a7b2d7f7ef952ebCAS |

[15]  Y. Yang, C. Q. Zhang, Z. Q. Hu, Environ. Sci.: Processes Impacts 2013, 15, 39.
         | 1:CAS:528:DC%2BC38XhvFWgt73J&md5=700fb1207e615bfb2408014ee1273631CAS |

[16]  W. L. Sun, K. Yin, X. Q. Yu, Chem. Eng. J. 2013, 225, 464.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptFGgurg%3D&md5=d9cde39f21f67f17cd0f8df1d457d1b3CAS |

[17]  X. Cai, Y. Gao, Q. Sun, Z. L. Chen, M. Megharaj, R. Naidu, Chem. Eng. J. 2014, 244, 19.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXktlOkt7k%3D&md5=fd1acaf1f435fe8ab269edf0b0605371CAS |

[18]  S. S. R. M. D. H. R. Wijesekara, B. F. A. Basnayake, M. Vithanage, Environ. Sci. Pollut. Res. Int. 2014, 21, 7075.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXosFCnurg%3D&md5=5e6ac9687cd454195c0b6e63feec0a05CAS |

[19]  M. A. Liendo, G. E. Navarro, C. H. Sampaio, Water, Air, Soil Pollut. 2013, 224, 1541.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  L. Shi, Y. Zhou, Z. L. Chen, M. Megharaj, R. Naidu, Environ. Sci. Pollut. Res. Int. 2013, 20, 3639.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntVynu7Y%3D&md5=bbf390936e8d0a13281bcca9222d138cCAS | 23114838PubMed |

[21]  A. K. Goswami, S. J. Kulkarni, S. K. Dharmadhikari, M. Phutke, Int. J. Sci., Eng. Technol. Res. (IJSETR) 2013, 2, 1353.

[22]  R. Nabizadeh, M. V. Amin, M. Alimohammadi, K. Naddafi, A. Mahvi, S. Yousefzadeh, J. Environ. Health Sci. Eng. 2013, 11, 1.
         | Crossref | GoogleScholarGoogle Scholar | 24499556PubMed |

[23]  Y. M. Li, Y. Zhang, J. F. Li, X. M. Zheng, Environ. Pollut. 2011, 159, 3744.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht12gsLbP&md5=c495b174e2ed580299a99d5b5b7f4a0fCAS |

[24]  C. Üzüm, T. Shahwan, A. E. Erǒglu, K. R. Hallam, T. B. Scott, I. Lieberwirth, Appl. Clay Sci. 2009, 43, 172.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  X. Zhang, S. Lin, X. Q. Lu, Z. L. Chen, Chem. Eng. J. 2010, 163, 243.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFOrsLzE&md5=53db9685bbba0b35592858c5c35d3be6CAS |

[26]  X. Zhang, S. Lin, X. Q. Lu, Z. L. Chen, Chem. Eng. J. 2010, 163, 243.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFOrsLzE&md5=53db9685bbba0b35592858c5c35d3be6CAS |

[27]  Z. H. Ai, Z. T. Gao, L. Z. Zhang, W. W. He, J. J. Yin, Environ. Sci. Technol. 2013, 47, 5344.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmsVCntLk%3D&md5=156306a379c1b3f99ec341e69d5a66e0CAS |

[28]  S. Z. Li, P. X. Wu, H. L. Li, N. W. Zhu, P. Li, J. H. Wu, X. D. Wang, Z. Dang, Appl. Clay Sci. 2010, 50, 330.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtl2itb%2FO&md5=aeb7c0cc87698be54c3acb31a6dbb4efCAS |

[29]  Q. Wang, S. Snyder, J. Kim, H. Choi, Environ. Sci. Technol. 2009, 43, 8871.

[30]  L. N. Shi, Y. M. Lin, X. Zhang, Z. L. Chen, Chem. Eng. J. 2011, 171, 612.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotVekt74%3D&md5=0b05d21bb6f2b06b54e9e09ead339d26CAS |

[31]  S. J. Gregg, K. S. W. Sing, Adsorption, Surface Area and Porosity 1982 (Academic Press: London).

[32]  S. Lagergren, K. Sven. Vetenskapsakad. Handl. 1898, 24, 1.

[33]  K. Shin, J. Hong, J. Jang, J. Hazard. Mater. 2011, 190, 36.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtlWqu70%3D&md5=01ac20aef469800c4ddfbf6e57c43700CAS | 21514721PubMed |

[34]  X. Wang, L. Zhu, H. Lu, Desalination 2011, 276, 154.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnvFOlsr8%3D&md5=2c9645262406d383b9f4ea00ea464b1cCAS |

[35]  H. K. Boparai, M. Joseph, D. M. O’Carroll, J. Hazard. Mater. 2011, 186, 458.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFaqsrg%3D&md5=70d4ef736cf26d587b12e6503759afebCAS | 21130566PubMed |

[36]  T. Wang, X. Y. Jin, Z. L. Chen, M. Megharaj, R. Naidu, J. Ind. Eng. Chem. 2014, 20, 3543.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpvVOlug%3D%3D&md5=cf3ea0a5cddff3dda625c7e1e9158324CAS |

[37]  P. Chingombe, B. Saha, R. J. Wakeman, J. Colloid Interface Sci. 2006, 302, 408.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpt1Oqtrg%3D&md5=950fd421a4908626a00faeb4523b1112CAS | 16870200PubMed |

[38]  M. Barkat, D. Nibou, S. Chearouche, A. Mellah, Chem. Eng. Process. 2009, 48, 38.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVymtbbM&md5=5fc9156be24acfa546565ebad2ee607aCAS |

[39]  G. Q. Tan, D. Xiao, J. Hazard. Mater. 2009, 164, 1359.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsVCltbc%3D&md5=4486d509f77e2635a6b0d038676f0fdfCAS |

[40]  O. Çelebi, C. Uzum, T. Shahwan, H. N. Erten, J. Hazard. Mater. 2007, 148, 761.
         | Crossref | GoogleScholarGoogle Scholar | 17686578PubMed |

[41]  N. D. Hutson, R. T. Yang, Adsorption 1997, 3, 189.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtFKrtbg%3D&md5=9656da287eed4a08a3e5584a2071254fCAS |

[42]  J. Q. Jiang, C. Cooper, S. Ouki, Chemosphere 2002, 47, 711.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjt1Sltbs%3D&md5=a6d2f6fa1dca1ff9caa8c255d91fa87eCAS | 12079066PubMed |

[43]  M. R. Taha, K. Ahmad, A. A. Aziz, Z. Chik, in Tropical Residual Soils Engineering (Eds B. B. K. Huat, G. S. Sew, F. H. Ali) 2009, pp. 377–403 (A. A. Balkema Publishers: London)

[44]  I. F. Nata, G. W. Salim, C. K. Lee, J. Hazard. Mater. 2010, 183, 853.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFCht77P&md5=fb3a309cffcb0631c5cd70a05a3e436fCAS | 20800347PubMed |

[45]  E. I. Unuabonah, K. O. Adebowale, B. I. Olu-Owolabi, J. Hazard. Mater. 2007, 144, 386.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltFyls70%3D&md5=536c518f67267faf4cdb4b9352ef6460CAS | 17156914PubMed |

[46]  T. Sikdera, Y. Mihara, S. Islam, T. Saito, S. Tanaka, M. Kurasaki, Chem. Eng. J. 2014, 236, 378.

[47]  S. Arrhenius, Z. Phys. Chem. 1889, 4, 226.

[48]  W. J. Weber, J. C. Morris, J. Sanit. Eng. Div. 1963, 89, 31.

[49]  A. Ozcan, A. S. Ozcan, O. Gok, in Hazardous Materials and Wastewater – Treatment, Removal and Analysis (Ed. A. A. Lewinsky) 2007, pp. 225–250 (Nova Science Publishers: New York, NY).

[50]  T. K. Sen, D. Gomez, Desalination 2011, 267, 286.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1SrtbfJ&md5=ea14807a0e731d5e7e8526135ccad1c5CAS |

[51]  M. Jiang, Q. Wang, X. Jin, Z. Chen, J. Hazard. Mater. 2009, 170, 332.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovFOht70%3D&md5=e22388ca312cc2133c60305ac3309ac5CAS | 19464114PubMed |

[52]  T. Shi, S. Jia, Y. Chen, Y. Wen, C. Du, H. Guo, Z. Wang, J. Hazard. Mater. 2009, 169, 838.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotlyjtL8%3D&md5=9350790c40eaf870d6cff19fcbc65c0bCAS | 19427115PubMed |

[53]  Q. Li, Q. Y. Yue, Y. Su, B. Y. Gao, H. Sun, Chem. Eng. J. 2010, 158, 489.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjt1aitrs%3D&md5=c4dbfabfc78c31bdd2b27fa3b215c8a3CAS |

[54]  K. Shin, J. Hong, J. Jang, Chem. Eng. J. 2011, 190, 36.
         | 1:CAS:528:DC%2BC3MXmtlWqu70%3D&md5=01ac20aef469800c4ddfbf6e57c43700CAS |

[55]  J. T. Nurmi, P. G. Tratnyek, V. Sarathy, D. R. Baer, J. E. Amonette, K. Pecher, Environ. Sci. Technol. 2005, 39, 1221.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVOhsLrI&md5=3c101aea4850e4fe597e50f1831926d0CAS | 15787360PubMed |

[56]  X. Q. Li, W. X. Zhang, J. Phys. Chem. C 2007, 111, 6939.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksFarsbc%3D&md5=64f661324776d463458343a6d06cdb6eCAS |

[57]  Y. P. Sun, X. Q. Li, J. S. Cao, W. X. Zhang, H. P. Wang, Adv. Colloid Interface Sci. 2006, 120, 47.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltVOrtLY%3D&md5=033ae78925db1e71970f1c9356642880CAS | 16697345PubMed |

[58]  D. Karabelli, C. Uzum, T. Shahwan, A. E. Eroglu, T. B. Scott, K. R. Hallam, I. Lieberwtrth, Chem. Eng. J. 2008, 47, 4758.
         | 1:CAS:528:DC%2BD1cXnsFels78%3D&md5=b9156c05420468ce8d26f80cfe934feaCAS |

[59]  R. A. Crane, T. B. Scott, J. Hazard. Mater. 2012, 211–212, 112.
         | Crossref | GoogleScholarGoogle Scholar | 22305041PubMed |

[60]  P. Chingombe, B. Saha, R. J. Wakeman, J. Colloid Interface Sci. 2006, 302, 408.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpt1Oqtrg%3D&md5=950fd421a4908626a00faeb4523b1112CAS | 16870200PubMed |

[61]  M. M. A. EI-Latif, A. M. Ibrahim, M. F. EI-Kady, Journal of American Science 2010, 6, 267.

[62]  H. K. Boparai, M. Joseph, D. M. O’Carroll, J. Hazard. Mater. 2011, 186, 458.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFaqsrg%3D&md5=70d4ef736cf26d587b12e6503759afebCAS | 21130566PubMed |

[63]  S. A. Kim, S. K. Kannan, K. J. Lee, Y. J. Park, P. J. Shea, W. H. Lee, H. M. Kim, B. T. Oh, Chem. Eng. J. 2013, 217, 54.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXisVOhu7k%3D&md5=4b86434ec11080629cfc812b08790668CAS |

[64]  Y. Chang, Y. Y. He, T. Liu, Y. H. Guo, F. Zha, Arabian J. Sci. Eng. 2014, 39, 6727.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVGrtb%2FO&md5=551802c5c7f02a233c9ecd8fa8ed5d9bCAS |

[65]  N. Efecan, T. Shahwan, A. E. Eroğlu, I. Lieberwirth, Desalination 2009, 249, 1048.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVWnsL3E&md5=3e0101d49a6ee612e700f515100986a8CAS |

[66]  X. Q. Li, D. W. Elliot, W. X. Zhang, Crit. Rev. Solid State Mater. Sci. 2006, 31, 111.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXovFU%3D&md5=e1ff1b6910b1ba917f632b2132f95666CAS |

[67]  X. Q. Li, D. W. Elliot, W. X. Zhang, J. Nanopart. Res. 2007, 9, 233.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXis1eqs7s%3D&md5=663cd8d8a48f85038fb4bc1ffee6e73eCAS |

[68]  X. Zhang, S. Lin, Z. L. Chen, M. Megharaj, R. Naidu, Water Res. 2011, 45, 3481.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtlWqsbo%3D&md5=da2eb586b61b644b933687b3544104deCAS | 21529878PubMed |