Urothermal Syntheses, Crystal Structures, and Luminescent Properties of Two New ZnII Compounds Constructed by the Mixed Ligands of 1,2,4-Triazole and 1,4-Naphthalenedicarboxylic Acid or 2,6-Naphthalenedicarboxylic Acid
Haiyan Liu A , Xufeng Meng A , Lihui Zhang B and Anqiang Jia C DA College of Sciences, Agricultural University of Hebei, Baoding 071001, China.
B College of Plant Protection, Agricultural University of Hebei, Baoding 071001, China.
C Rural and Urban Construction College of Hebei Agricultural University, Baoding 071001, China.
D Corresponding author. Email: anqiang_jia3157@163.com
Australian Journal of Chemistry 68(8) 1299-1304 https://doi.org/10.1071/CH14669
Submitted: 21 November 2014 Accepted: 16 January 2015 Published: 26 March 2015
Abstract
Under urothermal conditions, the self-assembly of ZnII ions, 1,2,3-triazole, and two isomeric dicarboxylate ligands (1,4-H2ndc and 2,6-H2ndc) afforded two new metal–organic frameworks, namely [Zn(1,4-ndc)0.5(taz)]n·n(e-urea) (1) and [Zn(2,6-ndc)0.5(taz)]n·n(H2O)·n(e-urea) (2) (1,4-H2ndc = 1,4-naphthalenedicarboxylic acid; 2,6-H2ndc = 2,6-naphthalenedicarboxylic acid; Htaz = 1,2,4-triazole; e-urea = ethyleneurea), which were further determined by single-crystal X-ray diffraction analyses, elemental analyses, powder X-ray diffraction analyses, and IR spectra. Compound 1 features a 3D pillar-layered framework with 6-connected pcu topology (pcu = α-Po), and compound 2 also features a 3D pillar-layered framework with 6-connected pcu topology. In addition, the thermal stabilities and solid-state photoluminescent properties of compounds 1 and 2 were also studied.
References
[1] (a) P. Dechambenoit, J. R. Long, Chem. Soc. Rev. 2011, 40, 3249.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVWkurY%3D&md5=c9f37ee5ff3a9929d3333660776dde85CAS | 21298169PubMed |
(b) M. O’Keeffe, O. M. Yaghi, Chem. Rev. 2012, 112, 675.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. Zhao, D. J. Timmons, D. Yuan, H. C. Zhou, Acc. Chem. Res. 2011, 44, 123.
| Crossref | GoogleScholarGoogle Scholar |
(d) J. Li, J. Tao, R. B. Huang, L. S. Zheng, Inorg. Chem. 2012, 51, 5988.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) L. H. Jia, R. Y. Li, Z. M. Duan, S. D. Jiang, B. W. Wang, Z. M. Wang, S. Gao, Inorg. Chem. 2011, 50, 144.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsV2ksLjJ&md5=c468264b3c1057d9091b4ec49ad4a5caCAS | 21126016PubMed |
(b) X. Zhang, Y. Y. Huang, Q. P. Lin, J. Zhang, Y. G. Yao, Dalton Trans. 2013, 42, 2294.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. P. Suh, H. J. Park, T. K. Prased, D. W. Lim, Chem. Rev. 2012, 112, 782.
| Crossref | GoogleScholarGoogle Scholar |
(d) C. T. He, J. Y. Tian, S. Y. Liu, G. F. Ouyang, J. P. Zhang, X. M. Chen, Chem. Sci 2013, 4, 351.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) Z. Q. Jiang, G. Y. Jiang, F. Wang, Z. Zhao, J. Zhang, Chem. – Eur. J. 2012, 18, 10525.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvFCrt7o%3D&md5=6ec3e3bb90c7165bc567b2c5d65d1ae1CAS | 22782784PubMed |
(b) G. Akiyama, R. Matsuda, H. Sato, A. Hori, M. Takata, S. Kitagawa, Microporous Mesoporous Mater. 2012, 157, 89.
| Crossref | GoogleScholarGoogle Scholar |
(c) Y. Liu, J. R. Li, W. M. Verdegaal, T. F. Liu, H. C. Zhou, Chem. – Eur. J. 2013, 19, 5637.
| Crossref | GoogleScholarGoogle Scholar |
(d) Y. P. He, Y. X. Tan, J. Zhang, Inorg. Chem. 2013, 52, 12758.
| Crossref | GoogleScholarGoogle Scholar |
(e) J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K. P. Lillerud, J. Am. Chem. Soc. 2008, 130, 13850.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) T. Ahnfeldt, N. Guillou, D. Gunzelmann, I. Margiolaki, T. Loiseau, G. Ferey, J. Senker, N. Stock, Angew. Chem. Int. Ed. 2009, 48, 5163.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotVens7o%3D&md5=a0df40f9aefe69e362fd0b7365679cadCAS |
(b) M. Yoon, R. Sriambalaji, M. Kim, Chem. Rev. 2012, 112, 1196.
| Crossref | GoogleScholarGoogle Scholar |
(c) Q. Chen, W. Xue, J. B. Lin, R. B. Lin, M. H. Zeng, X. M. Chen, Dalton Trans. 2012, 41, 4199.
| Crossref | GoogleScholarGoogle Scholar |
(d) X. Zhang, Y. Y. Huang, J. K. Cheng, Y. G. Yao, J. Zhang, F. Wang, CrystEngComm 2012, 14, 4843.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) M. D. Allendorf, C. A. Bauer, R. K. Bhakta, R. J. T. Houk, Chem. Soc. Rev. 2009, 38, 1330.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvVamurg%3D&md5=2b75ad77141fdd7365ac7d2bfc21afa0CAS | 19384441PubMed |
(b) H. Yang, F. Wang, Y. X. Tan, T. H. Li, J. Zhang, Chem. Asian J. 2012, 7, 1069.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. Yang, J. F. Ma, Y. Y. Liu, S. R. Batten, CrystEngComm 2009, 11, 151.
| Crossref | GoogleScholarGoogle Scholar |
(d) R. B. Fu, S. M. Hu, X. T. Wu, CrystEngComm 2011, 13, 6007.
| Crossref | GoogleScholarGoogle Scholar |
(e) T. H. Noh, Y. J. Choi, Y. K. Ryu, Y. A. Lee, O. S. Jung, CrystEngComm 2009, 11, 2371.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) Y. P. He, Y. X. Tan, J. Zhang, Chem. Commun. 2013, 49, 11323.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslCqtbbP&md5=dfe7cf3531b4b0ff9ef8d21070a33aedCAS |
(b) M. Eddaoudi, D. B. Moler, H. Li, B. Chen, T. M. Reineke, M. O. Keeffe, O. M. Yaghi, Acc. Chem. Res. 2001, 34, 319.
| Crossref | GoogleScholarGoogle Scholar |
(c) Y. Q. Chen, S. J. Liu, Y. W. Li, G. R. Li, K. H. He, Z. Chang, X. H. Bu, CrystEngComm 2013, 15, 1613.
| Crossref | GoogleScholarGoogle Scholar |
(d) Z. Q. Wang, S. M. Cohen, Chem. Soc. Rev. 2009, 38, 1315.
| Crossref | GoogleScholarGoogle Scholar |
(e) J. D. Lin, J. W. Cheng, S. W. Du, Cryst. Growth Des. 2008, 8, 3345.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) J. X. Yang, Y. Y. Qin, J. K. Cheng, Y. G. Yao, Cryst. Growth Des. 2014, 14, 1047.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpt1Ojtw%3D%3D&md5=baaa909b9f7fff9e6fc7b3fc36555a02CAS |
(b) F. Guo, B. Y. Zhu, M. L. Liu, X. L. Zhang, J. Zhang, J. P. Zhao, CrystEngComm 2013, 15, 6191.
| Crossref | GoogleScholarGoogle Scholar |
(c) F. Guo, B. Y. Zhu, G. L. Xu, M. M. Zhang, X. L. Zhang, J. Zhang, J. Solid State Chem. 2013, 199, 42.
| Crossref | GoogleScholarGoogle Scholar |
(d) G. L. Xu, F. Guo, Inorg. Chem. Commun. 2013, 27, 146.
| Crossref | GoogleScholarGoogle Scholar |
(e) G. B. Yang, Z. H. Sun, Inorg. Chem. Commun. 2013, 29, 94.
| Crossref | GoogleScholarGoogle Scholar |
(f) X. H. Lou, C. Xu, H. M. Li, Z. J. Zhang, H. Zhang, J. Inorg. Organomet. Polym. Mater. 2013, 23, 659.
| Crossref | GoogleScholarGoogle Scholar |
(g) D. C. Hou, G. Y. Jiang, H. R. Fu, Z. Zhao, J. Zhang, CrystEngComm 2013, 15, 9499.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) J. Zhang, J. T. Bu, S. M. Chen, T. Wu, S. T. Zheng, Y. G. Chen, R. A. Nieto, P. Y. Feng, X. H. Bu, Angew. Chem. Int. Ed. 2010, 49, 8876.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVWmsbfF&md5=dc2dd1c0fc27c214b0bf5a83fed55395CAS |
(b) Z. Q. Jiang, G. Y. Jiang, D. C. Hou, F. Wang, Z. Zhao, J. Zhang, CrystEngComm 2013, 15, 315.
| Crossref | GoogleScholarGoogle Scholar |
(c) Y. L. Dong, P. P. Zhou, H. M. Liu, J. Inorg. Organomet. Polym. Mater. 2014, 24, 874.
| Crossref | GoogleScholarGoogle Scholar |
(d) X. H. Lou, H. M. Li, Q. T. Li, W. J. Du, C. Xu, Chin. J. Struct. Chem. 2014, 33, 597.
(e) C. H. Zhan, F. Wang, Y. Kang, J. Zhang, Inorg. Chem. 2012, 51, 523.
| Crossref | GoogleScholarGoogle Scholar |
(f) E. Yang, H. Y. Li, Z. S. Liu, Q. D. Ling, Inorg. Chem. Commun. 2013, 30, 152.
| Crossref | GoogleScholarGoogle Scholar |
(g) T. Z. Liu, D. B. Luo, D. G. Xu, H. M. Zeng, Z. E. Lin, Inorg. Chem. Commun. 2013, 29, 110.
| Crossref | GoogleScholarGoogle Scholar |
(h) Z. S. Liu, E. Yang, Y. Kang, J. Zhang, Inorg. Chem. Commun. 2011, 14, 355.
| Crossref | GoogleScholarGoogle Scholar |
[9] F. Wang, Y. X. Tan, J. Zhang, Solid State Sci. 2012, 14, 1263.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Gks7vN&md5=1d366ade952f88b479989697877af6bfCAS |
[10] (a) F. L. Hu, H. H. Zou, X. B. Zhao, Y. Mi, C. L. Luo, Y. X. Wang, CrystEngComm 2013, 15, 1068.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntlSluw%3D%3D&md5=4821a24d98dcdaf3811fddd69ed95252CAS |
(b) H. Wu, H. Y. Lin, J. Yang, B. Liu, J. F. Ma, Y. Y. Liu, Y. Y. Liu, Cryst. Growth Des. 2011, 11, 2317.
| Crossref | GoogleScholarGoogle Scholar |
(c) L. N. Li, J. H. Luo, S. Y. Wang, Z. H. Sun, T. L. Chen, M. C. Hong, Cryst. Growth Des. 2011, 11, 3744.
| Crossref | GoogleScholarGoogle Scholar |
(d) L. N. Li, S. Q. Zhang, L. Han, Z. H. Sun, J. H. Luo, M. C. Hong, Cryst. Growth Des. 2013, 13, 106.
| Crossref | GoogleScholarGoogle Scholar |
(e) F. Guo, F. Wang, H. Yang, X. L. Zhang, J. Zhang, Inorg. Chem. 2012, 51, 9677.
| Crossref | GoogleScholarGoogle Scholar |
[11] (a) G. C. Liu, Y. Q. Chen, X. L. Wang, B. Chen, H. Y. Lin, J. Solid State Chem. 2009, 182, 566.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisFSrs74%3D&md5=54294b9c2042d92ce0b55753792852f4CAS |
(b) L. Zhu, J. Gao, Z. An, J. Mol. Struct. 2013, 1054, 234.
(c) X. S. Wang, Y. Z. Tang, X. F. Huang, Z. R. Qu, C. M. Che, W. H. Chan, R. G. Xiong, Inorg. Chem. 2005, 44, 5278.
| Crossref | GoogleScholarGoogle Scholar |
(d) X. W. Wang, J. Z. Chen, J. H. Liu, Cryst. Growth Des. 2007, 7, 1227.
| Crossref | GoogleScholarGoogle Scholar |
[12] (a) L. Wen, Y. Li, Z. Lu, J. Lin, C. Duan, Q. Meng, Cryst. Growth Des. 2006, 6, 530.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhtw%3D%3D&md5=e82e31892781d8f17ec0c0053fa4c475CAS |
(b) J. G. Lin, S. Q. Zang, Z. F. Tian, Y. Z. Lin, Y. Y. Xu, H. Z. Zhu, Q. J. Meng, CrystEngComm 2007, 9, 915.
| Crossref | GoogleScholarGoogle Scholar |
[13] J. Y. Gao, N. Wang, X. H. Xiong, C. J. Chen, W. P. Xie, X. R. Ran, Y. Long, S. T. Yue, Y. L. Liu, CrystEngComm 2013, 15, 3261.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltVOrtL0%3D&md5=1c8d89d230df21b7e836208b87bf5b08CAS |
[14] G. M. Sheldrick, SADABS 1996 (University of Göttingen: Göttingen).
[15] G. M. Sheldrick, SHELXL-97: Program for Refining Crystal Structure Refinement 1997 (University of Göttingen: Göttingen).