Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Visible Light-Driven BiVO4/TiO2 Composite Photocatalysts: Preparation Methods and Photocatalytic Performance

Shuyun Wang A , Wenjun Li A B , Feiwu Chen A , Shaonan Gu A and Zhidong Chang A
+ Author Affiliations
- Author Affiliations

A Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.

B Corresponding author. Email: wjliustb@126.com

Australian Journal of Chemistry 68(8) 1268-1275 https://doi.org/10.1071/CH14634
Submitted: 18 September 2014  Accepted: 6 January 2015   Published: 19 March 2015

Abstract

BiVO4/TiO2 composite photocatalysts were successfully synthesised via different methods, and the physical and photophysical properties of the as-prepared photocatalysts were fully characterised by X-ray diffraction, scanning electron microscopy, field-emission transmission electron microscopy, energy dispersive spectroscopy, UV-vis diffuse reflectance spectroscopy, photoluminescence spectroscopy and Brunauer–Emmett–Teller (BET) surface area analysis. Methylene blue was selected as model pollutant to investigate the photocatalytic activity of BiVO4/TiO2 composite materials. The results reveal that BiVO4/TiO2 fabricated by different methods exhibits higher photocatalytic activity than pure BiVO4 and TiO2, and the coprecipitated BiVO4/TiO2 composite shows the best photocatalytic activity. The diffuse reflectance spectroscopy results demonstrated that the 20 wt-% coprecipitated BiVO4/TiO2 exhibited a significant, broad spectrum response not only between 400 and 500 nm but also from 500 to 800 nm wavelength.


References

[1]  M. R. Hoffmann, S. T. Martin, W. Y. Choi, D. W. Bahnemann, Chem. Rev. 1995, 95, 69.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjtF2qur4%3D&md5=1f69c14f4e7ad0fe2c36737b7e06311bCAS |

[2]  C. C. Chen, W. H. Ma, J. C. Zhao, Chem. Soc. Rev. 2010, 39, 4206.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlShtb3N&md5=8ed58f0baab8ccb19918a779fc153730CAS |

[3]  X. B. Chen, L. Liu, P. Y. Yu, S. S. Mao, Science 2011, 331, 746.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1yrsrg%3D&md5=3492b4035bf6de8e976c457fb4570318CAS |

[4]  Z. G. Zou, J. H. Ye, K. Sayama, H. Arakawa, Nature 2001, 414, 625.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtVyj&md5=b948e45945afda35d8167e5a27cfacc2CAS |

[5]  H. Kisch, Angew. Chem. Int. Ed. 2013, 52, 812.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslymsL3E&md5=1f1341dafccffb1ce924e1c014e8cdf0CAS |

[6]  X. B. Chen, S. S. Mao, Chem. Rev. 2007, 107, 2891.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmslyrurc%3D&md5=cfd6913053ff5883f6e3ce78776d0874CAS |

[7]  Y. Liu, J. F. Ma, Z. S. Liu, C. H. Dai, Z. W. Song, Y. Sun, J. R. Fang, J. G. Zhao, Ceram. Int. 2010, 36, 2073.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvVSlsr8%3D&md5=89515b97735459f5a52755918635adf1CAS |

[8]  S. Y. Chai, Y. J. Kim, M. H. Jung, A. K. Chakraborty, D. Jung, W. I. Lee, J. Catal. 2009, 262, 144.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXit1Wqs7c%3D&md5=948579be10bd0629b2945eba6743ece8CAS |

[9]  L. Zhou, W. W. Wang, S. W. Liu, L. S. Zhang, H. L. Xu, W. Zhu, J. Mol. Catal. Chem. 2006, 252, 120.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xkt1yhtbs%3D&md5=3e6ff9c5bd746a62d4bec0019e586d80CAS |

[10]  J. J. Ding, S. Sun, J. Bao, Z. L. Luo, C. Gao, Catal. Lett. 2009, 130, 147.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtF2mtbY%3D&md5=7b143a3a47b8ca9703cbff6154a3e364CAS |

[11]  Z. H. Ai, L. Z. Zhang, S. C. Lee, J. Phys. Chem. C 2010, 114, 18594.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1OgsrjJ&md5=8133c60d63dbdb7224063af362d9d9d9CAS |

[12]  D. Q. He, L. L. Wang, H. Y. Li, T. Y. Yan, D. J. Wang, T. F. Xie, CrystEngComm 2011, 13, 4053.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsFKrtbg%3D&md5=86a190d6ac4a59882abf5ea032536672CAS |

[13]  X. T. Hong, X. H. Wu, Q. Y. Zhang, M. F. Xiao, G. L. Yang, M. R. Qiu, G. C. Han, Appl. Surf. Sci. 2012, 258, 4801.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvFOjtr8%3D&md5=cbb38cb2c8633198a459a2fd8ce6c6abCAS |

[14]  T. Saison, N. Chemin, C. Chaneac, O. Durupthy, V. Ruaux, L. Mariey, F. Mauge, P. Beaunier, J. P. Jolivet, J. Phys. Chem. C 2011, 115, 5657.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivFClt7o%3D&md5=427902d5112efdd8557abf4bd492e880CAS |

[15]  Y. H. Ng, A. Iwase, A. Kudo, R. Amal, J. Phys. Chem. Lett. 2010, 1, 2607.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVeiu7jI&md5=cb70917322cd924894e9e481aef6f332CAS |

[16]  M. C. Long, W. M. Cai, H. Kisch, J. Phys. Chem. C 2008, 112, 548.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVOntLzK&md5=d22e1638babba5b66239418e835bc37aCAS |

[17]  J. A. Seabold, K. S. Choi, J. Am. Chem. Soc. 2012, 134, 2186.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVChs7o%3D&md5=96029e8b2545435005d60ceb2128589cCAS | 22263661PubMed |

[18]  A. Kudo, Int. J. Hydrogen Energy 2006, 31, 197.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlCms7nN&md5=fbaf62be89993c4c182cddff8bb60c5cCAS |

[19]  A. Kudo, R. Niishiro, A. Iwase, H. Kato, Chem. Phys. 2007, 339, 104.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFSisbvF&md5=19e76500493cd1df9e2474fe80141dccCAS |

[20]  D. Zhou, L. X. Pang, J. Guo, H. Wang, X. Yao, C. Randall, Inorg. Chem. 2011, 50, 12733.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFSjsLrM&md5=583e2c8dcb18455635f2ef567273c4dbCAS | 22103679PubMed |

[21]  D. K. Zhong, S. Choi, D. R. Gamelin, J. Am. Chem. Soc. 2011, 133, 18370.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlCiurbM&md5=b4236b487534f6369767398618070997CAS | 21942320PubMed |

[22]  W. Liu, Y. Q. Yu, L. X. Cao, G. Su, X. Y. Liu, L. Zhang, Y. G. Wang, J. Hazard. Mater. 2010, 181, 1102.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosF2gs7g%3D&md5=278d35b3ca6cae0e280e3d2ef67f81faCAS | 20576353PubMed |

[23]  A. P. Zhang, J. Z. Zhang, N. Y. Cui, X. Y. Tie, Y. W. An, L. J. Li, J. Mol. Catal. Chem. 2009, 304, 28.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkslymu7Y%3D&md5=1dc9350aff2e741218504501a7036f39CAS |

[24]  G. Li, D. Zhang, J. C. Yu, Chem. Mater. 2008, 20, 3983.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsVKht70%3D&md5=75d96f67dc490f433305dc4b4e3b1f3dCAS |

[25]  S. W. Cao, Z. Yin, J. Barber, F. Y. C. Boey, S. C. J. Loo, C. Xue, ACS Appl. Mater. Interfaces 2012, 4, 418.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFOhtrnM&md5=a33dd78226fca062933704888f4db8f9CAS | 22141400PubMed |

[26]  L. Ge, J. Mol. Catal. Chem. 2008, 282, 62.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXis1ClsLg%3D&md5=6391dd9c7fec55239622d84fb095cd0cCAS |

[27]  A. P. Zhang, Z. J. Zhang, Appl. Surf. Sci. 2010, 256, 3224.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXivVymuro%3D&md5=27a53c96765001d375dffb4443cdd6e2CAS |

[28]  H. Xu, H. M. Li, C. D. Wu, J. Y. Chu, Y. S. Yan, H. M. Shu, Mater. Sci. Eng. B 2008, 147, 52.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFWkuro%3D&md5=880d5edd5a40a18a19a7738879ea18ffCAS |

[29]  L. Li, B. Yan, J. Alloy. Comp. 2009, 476, 624.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkslGhurk%3D&md5=d47c905c527db71b8a4879858fa93f5bCAS |

[30]  L. Chen, S. F. Yin, S. L. Luo, R. Huang, Q. Zhang, T. Hong, P. C. T. Au, Ind. Eng. Chem. Res. 2012, 51, 6760.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtVGltro%3D&md5=ce89ebe943d66e773c0713f0de66ed33CAS |

[31]  M. C. Long, W. M. Cai, J. Cai, B. X. Zhou, X. Y. Chai, Y. H. Wu, J. Phys. Chem. B 2006, 110, 20211.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpsFCqs74%3D&md5=648bbc5c46df518d377ed42d6712cdd1CAS |

[32]  J. Su, X. X. Zou, G. D. Li, X. Wei, C. Yan, Y. N. Wang, J. Zhao, L. J. Zhou, J. S. Chen, J. Phys. Chem. C 2011, 115, 8064.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkt1Wntrc%3D&md5=8d5147cd49566bb721dfd7ebabf71e6cCAS |

[33]  H. Jiang, M. Nagai, K. Kobayashi, J. Alloy. Comp. 2009, 479, 821.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvFyjtL4%3D&md5=f021fce736e8db844261387374b4994fCAS |

[34]  T.-H. Ji, F. Yang, J.-Y. Zhou, H.-Y. Du, J.-Y. Sun, Spectrosc. Spect. Anal. 2010, 30, 1944.
         | 1:CAS:528:DC%2BC3cXos12hsL0%3D&md5=14431dff6914a880b9a1f785843b4f63CAS |

[35]  L. Guo, D.-J. Wang, F. Fu, X.-D. Qiang, F. Zhang, Applied Chemical Industry 2012, 41, 260.
         | 1:CAS:528:DC%2BC38XnvFertLs%3D&md5=ce95684f32f462670000b52bab5aa921CAS |

[36]  L. Hu, Z.-X. Ye, Y.-G. Lu, C.-H. Xu, J. Mol. Catal. 2013, 27, 378.

[37]  Y. L. Min, K. Zhang, Y. C. Chen, Y. G. Zhang, Chem. Eng. J. 2011, 175, 76.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVGktbbP&md5=56111b1d0c9321a624bfad792fd1579aCAS |

[38]  J. Wang, X. M. Fan, D. Z. Wu, J. Dai, H. Liu, H. R. Liu, Z. W. Zhou, Appl. Surf. Sci. 2011, 258, 1797.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsV2itL3E&md5=4c2973fa0154c38176b72a56aebfb844CAS |

[39]  N. Wetchakun, S. Chaiwichain, B. Inceesungvorn, K. Pingmuang, S. Phanichphant, A. I. Minett, J. Chen, ACS Appl. Mater. Interfaces 2012, 4, 3718.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpsVGlsLc%3D&md5=1a63a858d60556ed0d7b095256f59ba7CAS | 22746549PubMed |

[40]  M. L. Guan, D. K. Ma, S. W. Hu, Y. J. Chen, S. M. Huang, Inorg. Chem. 2011, 50, 800.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsF2ms7bE&md5=65238f4b4fcd93825b8aa1b113bf7f10CAS | 21171642PubMed |

[41]  J. Tang, Z. Zou, J. Ye, Angew. Chem. Int. Ed. 2004, 43, 4463.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsFOgsLw%3D&md5=1184f87dcb13db695d7baea9830d9c95CAS |

[42]  Y. He, Y. F. Zhu, N. Z. Wu, J. Solid State Chem. 2004, 177, 3868.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpslKmt7c%3D&md5=1d9aa2bf571fc95119427d49c544da78CAS |

[43]  W. Zhao, Y. Wang, Y. Yang, J. Tang, Y. Yang, Appl. Catal. B 2012, 115–116, 90.
         | Crossref | GoogleScholarGoogle Scholar |

[44]  Y. H. Xu, C. J. Liu, M. J. Chen, Y. Q. Liu, Int. J. Nanopart. 2011, 4, 268.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvVajtLY%3D&md5=d07cb69cd57676b688c6acaad894b58eCAS |

[45]  M. Long, W. M. Cai, J. Cai, B. X. Zhou, X. Y. Chai, Y. H. Wu, J. Phys. Chem. B 2006, 110, 20211.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpsFCqs74%3D&md5=648bbc5c46df518d377ed42d6712cdd1CAS | 17034198PubMed |

[46]  F. Duan, Y. Zheng, M. Q. Chen, Appl. Surf. Sci. 2011, 257, 1972.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFOqtbrN&md5=2e50f231dc9557fbce8b5d4821db3a77CAS |

[47]  A. P. Zhang, Z. J. Zhang, Mater. Lett. 2009, 63, 1939.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXos12rsrc%3D&md5=277257894a11b071567758be222f1dd4CAS |

[48]  K. Fujihara, S. Izumi, T. Ohno, M. Matsumura, J. Photochem. Photobiol. A 2000, 132, 99.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhs1yqtb8%3D&md5=7e16d117335d2efd056c6f7e096972b6CAS |