Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Phase Behaviours of Polybutadiene–Polyacrylic Acid Brushes in Compressed Carbon Dioxide

Rui Zhang A D , Lixiao Liu A , Yicun Wen A , Yu Cang A , Guixin Shi A , Yingyi Zhao B , Xiaoling Liu B , Ying Lin B , Jun Xu A , Zhiming Zhou A and Xuhong Guo A C D
+ Author Affiliations
- Author Affiliations

A State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.

B Department of Food Science and Engineering, Guangxi University, Nanning 530004, China.

C Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, Shihezi University, Xinjiang 832003, China.

D Corresponding authors. Email: r.zhang@ecust.edu.cn; guoxuhong@ecust.edu.cn

Australian Journal of Chemistry 68(8) 1255-1260 https://doi.org/10.1071/CH14579
Submitted: 19 September 2014  Accepted: 22 December 2014   Published: 20 March 2015

Abstract

Our present work investigated the phase behaviour of polybutadiene–poly acrylic acid (PB–PAA) brushes–solvent–CO2 ternary system in detail. The phase separation pressures increased with increasing temperatures and solid contents of PB–PAA solution, and decreased with increasing sizes of the brushes. Considering that the expansion of water was much smaller than that of ethanol by compressed CO2, a higher cloud point pressure of CO2 could be employed to reach the phase separation when water was added as the co-solvent. Owing to the penetration of CO2 into the periphery of the shell, the chains of the polymer brushes initially shrank and then turned to aggregations before finally precipitating upon CO2 addition. Our results provide a simple and effective way for separation and recovery of polymer brushes that could promote a wider range of their applications.


References

[1]  X. Guo, A. Weiss, M. Ballauff, Macromolecules 1999, 32, 6043.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXls1aisL0%3D&md5=d918301efded1e829a18273099104ae9CAS |

[2]  M. Schrinner, M. Ballauff, Y. Talmon, Y. Kauffmann, J. Thun, M. Möller, J. Breu, Science 2009, 323, 617.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVOgu78%3D&md5=600093ff21c210c965d56149bf8229cbCAS | 19179526PubMed |

[3]  K. Henzler, A. Wittemann, E. Breininger, M. Ballauff, S. Rosenfeldt, Biomacromolecules 2007, 8, 3674.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFGisrnP&md5=d6d6dd0e75e6ac19b6576d7f11cfe8c7CAS | 17929973PubMed |

[4]  M. Ballauff, Prog. Polym. Sci. 2007, 32, 1135.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFSisbrL&md5=1b9b25bee4a2ba3d28e7cd8c93f9323aCAS |

[5]  K. M. Chen, Y. Zhu, L. Li, Y. Lu, X. H. Guo, Macromol. Rapid Commun. 2010, 31, 1440.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVKhsL7J&md5=f8713af2b6557ad2ccfee743552cac68CAS |

[6]  R. Noyori, Chem. Rev. 1999, 99, 353.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXks1Klsw%3D%3D&md5=ecf684a6ffdc704f14d2a685e619b2eaCAS | 11848984PubMed |

[7]  D. Sanli, S. E. Bozbag, C. Erkey, J. Mater. Sci. 2012, 47, 2995.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFGkurnK&md5=dd332f2f7e569498aa43ee5b5c3e334eCAS |

[8]  P. Imsanguan, T. Yanothai, S. Pongamphai, S. Douglas, W. Teppaitoon, P. L. Douglas, Can. J. Chem. Eng. 2011, 89, 529.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsF2jt7Y%3D&md5=d2540869ccbf799ec00e493b2943d7b4CAS |

[9]  D. L. Tomasko, H. B. Li, D. H. Liu, X. G. Han, M. J. Wingert, L. J. Lee, K. W. Koelling, Ind. Eng. Chem. Res. 2003, 42, 6431.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnt1Kntb4%3D&md5=80a04cd348fa0182a353d981bc1176e9CAS |

[10]  C. F. Kirby, M. A. McHugh, Chem. Rev. 1999, 99, 565.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXis1Gqsg%3D%3D&md5=2fe6e1eda0c93be9445b42e224f37799CAS | 11848993PubMed |

[11]  G. Gedler, M. Antunes, J. I. Velasco, J. Supercrit. Fluids 2014, 88, 66.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtVCitLs%3D&md5=0162d7a5b1c173df00dcfaf0e00773eeCAS |

[12]  K. P. Johnston, S. R. P. da Rocha, J. Supercrit. Fluids 2009, 47, 523.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptl2jsA%3D%3D&md5=1ad00b30bd69cb1a73cb597e63a3a750CAS |

[13]  K. P. Johnston, K. L. Harrison, M. J. Clarke, S. M. Howdle, M. P. Heitz, F. V. Bright, C. Carlier, T. W. Randolph, Science 1996, 271, 624.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XptVyisA%3D%3D&md5=9101161b64941b8570f143575cff75eaCAS |

[14]  S. R. P. da Rocha, J. L. Dickson, D. Cho, P. J. Rossky, K. P. Johnston, Langmuir 2003, 19, 3114.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhvF2lu7w%3D&md5=676156841e74d616fcd03eab04e8428cCAS |

[15]  M. C. McLeod, M. Anand, C. L. Kitchens, C. B. Roberts, Nano Lett. 2005, 5, 461.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVKlur4%3D&md5=2adc6b62f61a9b6a1754402d06d2db20CAS | 15755095PubMed |

[16]  R. Zhang, J. Liu, J. He, B. X. Han, X. G. Zhang, Z. M. Liu, T. Jiang, G. H. Hu, Macromolecules 2002, 35, 7869.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xms12ru70%3D&md5=e65f8bfb2c25a77175029ae10046a751CAS |

[17]  R. Zhang, H. Yokoyama, Macromolecules 2009, 42, 3559.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksFynur0%3D&md5=46b631b22ac41f428f8b0036c09c3da1CAS |

[18]  R. Zhang, C. Dutriez, K. Sugiyama, T. Ishizone, H. Yokoyama, Soft Matter 2011, 7, 4032.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkt1GqtLg%3D&md5=62639862bd0b2aa427a7560c8cb1b87fCAS |

[19]  P. Servio, P. Englezos, Fluid Phase Equilib. 2001, 190, 127.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXosF2ntro%3D&md5=bcc9e1a5def73ece688595f0293c3874CAS |

[20]  Y. C. Wen, X. H. Guo, S. Kalasin, M. M. Santore, Langmuir 2014, 30, 2019.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXivFyktrg%3D&md5=9d2b373d2961ab15f8ab76fd5c10d81cCAS |

[21]  I. Dalmolin, E. Skovroinski, A. Biasi, M. L. Corazza, C. Dariva, J. V. Oliveira, Fluid Phase Equilib. 2006, 245, 193.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmt1ajsbY%3D&md5=f88890f40ef57fa8564ec2d816a9ec1dCAS |

[22]  P. G. Jessop, B. Subramaniam, Chem. Rev. 2007, 107, 2666.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtlaks70%3D&md5=530d86b6f894e6755ed509418b7e6f8eCAS | 17564482PubMed |

[23]  K. N. West, C. Wheeler, J. P. McCarney, K. N. Griffith, D. Bush, C. L. Liotta, C. A. Eckert, J. Phys. Chem. A 2001, 105, 3947.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXit12htL8%3D&md5=0fd920236725785d4d057e7d9cf39143CAS |

[24]  X. Guo, M. Ballauff, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 2001, 64, 051406.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38%2FjvFWjsQ%3D%3D&md5=cbabbb76fbdc4e7da01fa3395c886597CAS |

[25]  K. L. Toews, R. M. Shroll, C. M. Wai, Anal. Chem. 1995, 67, 4040.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXosFyqt7c%3D&md5=1e6d4d4e328723adc7dd585fba8a2154CAS |

[26]  X. M. Qi, S. J. Yao, Y. X. Guan, Biotechnol. Prog. 2004, 20, 1176.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXks1Gis70%3D&md5=b8ed143bf334222a2efed49bf7b9581aCAS | 15296445PubMed |

[27]  R. Kumar, B. G. Sumpter, S. M. Kilbey, J. Chem. Phys. 2012, 136, 234901.
         | Crossref | GoogleScholarGoogle Scholar | 22779613PubMed |

[28]  A. Martín, A. Bouchard, G. W. Hofland, G. J. Witkamp, M. J. Cocero, J. Supercrit. Fluids 2007, 41, 126.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  S. S. Dukhin, Y. Shen, R. Dave, R. Pfeffer, Colloids Surf. A 2005, 261, 163.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktlars7Y%3D&md5=0f58af6003350e98f188d51cc0e676b7CAS |

[30]  G. H. Li, J. Xu, S. F. Zhao, Y. Q. Zhu, L. Li, X. H. Guo, Z. Phys. Chem. 2012, 226, 613.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhtlylt7vI&md5=d3c786ad8da6874c7d4e27cd2c06f7a6CAS |