Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

EBC-316, 325–327, and 345: New Pimarane Diterpenes from Croton insularis Found in the Australian Rainforest

Lidia A. Maslovskaya A , Andrei I. Savchenko B , Victoria A. Gordon C , Paul W. Reddell C , Carly J. Pierce A , Peter G. Parsons A and Craig M. Williams B D
+ Author Affiliations
- Author Affiliations

A QIMR Berghofer Medical Research Institute, PO Royal Brisbane Hospital, Brisbane, Qld 4029, Australia.

B School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Qld 4072, Australia.

C EcoBiotics Limited, PO Box 1, Yungaburra, Qld 4884, Australia.

D Corresponding author. Email: c.williams3@uq.edu.au

Australian Journal of Chemistry 68(4) 652-659 https://doi.org/10.1071/CH14550
Submitted: 8 September 2014  Accepted: 5 November 2014   Published: 13 January 2015

Abstract

Five new pimarane and related-type diterpenes (i.e. EBC-316, 325–327, and 345 (1015)), together with two known pimaranes (EBC-221 (8) and EBC-346 (9)), were isolated from the stems of Croton insularis, found in the Australian rainforest. All pimarane diterpenes disclosed herein are suggested to be biogenetically related to the same keto-Jacobs–Reynolds intermediate 2, via ring A and C oxidation. Anticancer activities of compounds 1113 are reported.


References

[1]  L. A. Maslovskaya, A. I. Savchenko, V. A. Gordon, P. W. Reddell, C. J. Pierce, P. G. Parsons, C. M. Williams, Org. Lett. 2011, 13, 1032.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFamtLo%3D&md5=d74eb2a9e0c7ce8bfb41ce432d835e11CAS | 21294576PubMed |

[2]  (a) For previous studies by our group on this plant system, see for example: L. A. Maslovskaya, A. I. Savchenko, E. H. Krenske, C. J. Pierce, V. A. Gordon, P. W. Reddell, P. G. Parsons, C. M. Williams, Angew. Chem. Int. Ed. 2014, 53, 7006.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXns1Wnt7k%3D&md5=30374d3718628da69886f5974b6386e6CAS |
      (b) L. A. Maslovskaya, A. I. Savchenko, V. A. Gordon, P. W. Reddell, C. J. Pierce, P. G. Parsons, C. M. Williams, Chem. – Eur. J. 2014, 20, 14226.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) L. A. Maslovskaya, A. I. Savchenko, E. H. Krenske, V. A. Gordon, P. W. Reddell, C. J. Pierce, P. G. Parsons, C. M. Williams, Chem. Commun. 2014, 12315.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) For previous studies by other groups on this plant system, see for example: M. C. Setzer, W. N. Setzer, B. R. Jackes, G. A. Gentry, D. M. Moriarity, Pharm. Biol. 2001, 39, 67.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) K. Graikou, N. Aligiannis, A.-L. Skaltsounis, I. Chinou, S. Michel, F. Tillequin, M. Litaudon, J. Nat. Prod. 2004, 67, 685.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) K. Graikou, N. Aligiannis, I. Chinou, A.-L. Skaltsounis, F. Tillequin, M. Litaudon, Helv. Chim. Acta 2005, 88, 2654.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  R. W. Denton, W. W. Harding, C. I. Anderson, H. Jacobs, S. McLean, W. F. Reynolds, J. Nat. Prod. 2001, 64, 829.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvFOhurs%3D&md5=9665c46f0648e578f0bddb6d8e7c0f33CAS | 11421758PubMed |

[5]  (a) T. Sakai, Y. Nakagawa, Phytochemistry 1988, 27, 3769.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhtlaiu7c%3D&md5=b0efc98402194cc3235de53aea9f1fb5CAS |
      (b) H.-Y. Liu, S.-J. Li, Y. Zhao, W. Ni, X.-J. Hao, J.-Z. Li, Y. Hua, B.-B. Xie, C. Qing, C.-X. Chen, Helv. Chim. Acta 2007, 90, 2017.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  T. Kuraishi, K. Ninomiya, T. Murakami, N. Tanaka, Y. Saiki, C.-M. Chen, Chem. Pharm. Bull. 1984, 32, 4883.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhsVKisb0%3D&md5=1ab049fae41b5adc2d4543cc1821a905CAS |

[7]  P. M. Mirzayans, R. H. Pouwer, C. M. Williams, P. V. Bernhardt, Eur. J. Org. Chem. 2012, 1633.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1ynt7o%3D&md5=77d3d1c3251ca5d960bff4522d288eaeCAS |

[8]  Z.-H. Hong, G.-W. Qin, R.-S. Xu, J. Asian Nat. Prod. Res. 2000, 2, 257.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  C. Triantaphylidès, M. Havaux, Trends Plant Sci. 2009, 14, 219.
         | Crossref | GoogleScholarGoogle Scholar | 19303348PubMed |

[10]  (a) U. Muellner, A. Huefner, E. Haslinger, Tetrahedron 2000, 56, 3893.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkt1Wqu7w%3D&md5=362cd13523f56446102316caa092669eCAS |
      (b) See also a review by: K. J. McCullough, M. Nojima, Curr. Org. Chem. 2001, 5, 601.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  For a review of biologically active naturally occurring peroxides, see: V. M. Dembitsky, Eur. J. Med. Chem. 2008, 43, 223.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitlWqtb0%3D&md5=ef69bb17a7680b8517de257d2a70716cCAS | 17618015PubMed |

[12]  J.-J. Xu, J.-T. Fan, G.-Z. Zeng, N.-H. Tan, Helv. Chim. Acta 2011, 94, 842.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlvFGgtbk%3D&md5=eb878c88364d4291198d4cc0b6398e9aCAS |