Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

An Asymmetric Variant of the Bischler–Möhlau Indole Synthesis*

Nishani Thennakoon A , Gurpreet Kaur A , Jingjing Wang A , Paul G. Plieger A and Gareth J. Rowlands A B
+ Author Affiliations
- Author Affiliations

A Institute of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.

B Corresponding author. Email: g.j.rowlands@massey.ac.nz

Australian Journal of Chemistry 68(4) 566-575 https://doi.org/10.1071/CH14548
Submitted: 5 September 2014  Accepted: 9 October 2014   Published: 15 January 2015

Abstract

Enantiomerically enriched planar chiral indoles were prepared by an asymmetric variant of the Bischler–Möhlau synthesis. Cinchonine was used as a ‘traceless’ resolving reagent, allowing the formation of readily separable quaternary ammonium salts that were the key intermediates in the indole synthesis. The condensation of the ammonium salt and various substituted anilines was achieved under microwave irradiation; this reduced reaction times and minimised racemisation. The utility of the indoles was demonstrated by their transformation into monophosphane ligands that were capable of coupling challenging substrates in the Suzuki–Miyaura reaction.


References

[1]  R. S. Cahn, C. Ingold, V. Prelog, Angew. Chem. Int. Ed. Engl. 1966, 5, 385.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF28XktFKitLk%3D&md5=d0b7cb2b255ef29269f638a13e41c732CAS |

[2]  Modern Cyclophane Chemistry (Eds R. Gleiter, H. Hopf) 2004 (Wiley-VCH: Weinheim).

[3]  P. B. Hitchcock, G. J. Rowlands, R. Parmar, Chem. Commun. 2005, 4219.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXnsl2ns7s%3D&md5=3d246a8f91717e55044fe9ec36b87175CAS |

[4]  P. B. Hitchcock, G. J. Rowlands, R. J. Seacome, Org. Biomol. Chem. 2005, 3, 3873.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1ehtb7O&md5=791bb4dc03039e58555a52b844111791CAS | 16240000PubMed |

[5]  G. J. Rowlands, Org. Biomol. Chem. 2008, 6, 1527.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvFCqsbk%3D&md5=ca4574851bf89e98ec20a4e9e20aa111CAS | 18421381PubMed |

[6]  S. E. Gibson, J. D. Knight, Org. Biomol. Chem. 2003, 1, 1256.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkt1Krsrs%3D&md5=21524b1cce07b0caa093ce9deb1130cdCAS | 12929653PubMed |

[7]  G. J. Rowlands, Isr. J. Chem. 2012, 52, 60.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFahsLs%3D&md5=4a275a0ec8ceab6299b20cbdb165ab77CAS |

[8]  V. Rozenberg, E. Sergeeva, H. Hopf, in Modern Cyclophane Chemistry (Eds R. Gleiter, H. Hopf) 2004, pp. 435–462 (Wiley-VCH: Weinheim).

[9]  Y. Morisaki, R. Hifumi, L. Lin, K. Inoshita, Y. Chujo, Polym. Chem. 2012, 3, 2727.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1yksrnE&md5=0da45ad5c92bcac02225d8cace58f706CAS |

[10]  B. Ortner, R. Waibel, P. Gmeiner, Angew. Chem. Int. Ed. 2001, 113, 1323.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  O. R. P. David, Tetrahedron 2012, 68, 8977.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1KjtbvN&md5=8252523ae66b7cf74df70f960fb0dec2CAS |

[12]  J. Paradies, Synthesis 2011, 3749.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvFGnsA%3D%3D&md5=f1dda82545de7eab030016dc4cfafb4aCAS |

[13]  A. A. Aly, A. B. Brown, Tetrahedron 2009, 65, 8055.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVOntbbO&md5=3f711d692f5bcebfb2d6c3a659c45278CAS |

[14]  P. B. Hitchcock, A. C. C. Hodgson, G. J. Rowlands, Synlett 2006, 2625.
         | 1:CAS:528:DC%2BD28Xht1WkurfK&md5=d63ed3189d7f752ff9616dbdc77b3537CAS |

[15]  R. J. Seacome, M. P. Coles, J. E. Glover, P. B. Hitchcock, G. J. Rowlands, Dalton Trans. 2010, 39, 3687.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvFKgtL8%3D&md5=8c5cb97cf4699a60b8fb6132f5710277CAS | 20364463PubMed |

[16]  J. R. Fulton, J. E. Glover, L. Kamara, G. J. Rowlands, Chem. Commun. 2011, 47, 433.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFeqtLnE&md5=1d73d0661ab4b740d619d92768e5337cCAS |

[17]  J. E. Glover, P. G. Plieger, G. J. Rowlands, Aust. J. Chem. 2014, 67, 374.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXkt1Wrt78%3D&md5=31dec480f7670527237da800e03868c9CAS |

[18]  J. E. Glover, D. J. Martin, P. G. Plieger, G. J. Rowlands, Eur. J. Org. Chem. 2013, 1671.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXosFOltw%3D%3D&md5=82cb7db78bf2c914360fcc3320d402a5CAS |

[19]  G. J. Rowlands, R. J. Seacome, Beilstein J. Org. Chem. 2009, 5, No. 9.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  D. A. Horton, G. T. Bourne, M. L. Smythe, Chem. Rev. 2003, 103, 893.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtlGkt7k%3D&md5=76eca7921ae8e86038377fff67f83373CAS | 12630855PubMed |

[21]  B. E. Evans, K. E. Rittle, M. G. Bock, R. M. DiPardo, R. M. Freidinger, W. L. Whitter, G. F. Lundell, D. F. Veber, P. S. Anderson, J. Med. Chem. 1988, 31, 2235.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmtVCgurs%3D&md5=a3157c80a9df418db93f309d2b627b15CAS | 2848124PubMed |

[22]  G. Chang, L. Yang, S. Liu, X. Luo, R. Lin, L. Zhang, RSC Adv. 2014, 4, 30630.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVyhsbbE&md5=f3a87b1cd65d052b727b69573bb1454dCAS |

[23]  S. M. Wong, C. M. So, F. Y. Kwong, Synlett 2012, 1132.
         | 1:CAS:528:DC%2BC38XhtVegtrjP&md5=ecb1974856134bf75174d7505dca2424CAS |

[24]  H. W. Lee, F. L. Lam, C. M. So, C. P. Lau, A. S. C. Chan, F. Y. Kwong, Angew. Chem. Int. Ed. 2009, 48, 7436.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGrs7%2FK&md5=55fac15f4b165dd72aa31ce52e72b465CAS |

[25]  C. M. So, W. K. Chow, P. Y. Choy, C. P. Lau, F. Y. Kwong, Chem. – Eur. J. 2010, 16, 7996.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptValurs%3D&md5=402c96ef9de5730bd9fe1495bbb20e93CAS | 20564295PubMed |

[26]  C. M. So, C. P. Lau, F. Y. Kwong, Angew. Chem. Int. Ed. 2008, 47, 8059.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1OltbnE&md5=1015c25f0e93173d86baf5954dbf450aCAS |

[27]  G. R. Humphrey, J. T. Kuethe, Chem. Rev. 2006, 106, 2875.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltlCitbg%3D&md5=cc567fdfd8b6293d0e9f004e18c9f98aCAS | 16836303PubMed |

[28]  S. Cacchi, G. Fabrizi, Chem. Rev. 2011, 111, PR215.
         | Crossref | GoogleScholarGoogle Scholar | 21557620PubMed |

[29]  D. F. Taber, P. K. Tirunahari, Tetrahedron 2011, 67, 7195.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVKju7rO&md5=d24c20b98db2085dfb13d1cb5dfbff49CAS | 25484459PubMed |

[30]  L. I. Kryvenko, B. N. Anisimov, T. P. Khristoforova, S. A. Soldatova, A. T. Soldatenkov, Chem. Heterocycl. Compd. 1997, 33, 929.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXit1Wktbc%3D&md5=ab9cddf8921d4c45a853a36f1a773422CAS |

[31]  B. Ortner, H. Hübner, P. Gmeiner, Tetrahedron Asymmetry 2001, 12, 3205.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsFCquw%3D%3D&md5=9701db6ebaef827d5bb1727070de5965CAS |

[32]  J. Clayden, P. M. Kubinski, F. Sammiceli, M. Helliwell, L. Diorazio, Tetrahedron 2004, 60, 4387.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsVOltLY%3D&md5=aba58709156ef99a9b8507b5fd0effdaCAS |

[33]  B. Kolesinska, Z. J. Kaminski, Org. Lett. 2009, 11, 765.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktVyjsQ%3D%3D&md5=6418c60df2bea672751ec5aa7e2d34beCAS | 19128150PubMed |

[34]  K. Pchalek, A. W. Jones, M. M. T. Wekking, D. S. Black, Tetrahedron 2005, 61, 77.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVCqsrbI&md5=f1e180192cd3884c4afbd1cfa5ea57f3CAS |

[35]  Y. Vara, E. Aldaba, A. Arrieta, J. L. Pizarro, M. I. Arriortua, F. P. Cossio, Org. Biomol. Chem. 2008, 6, 1763.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltlSnsbg%3D&md5=7731a2a39c2738699f76ca0964d85cb6CAS | 18452011PubMed |

[36]  CCDC-1022645 contains the supplementary crystallographic data for compound (pR)-6. This data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif

[37]  D. C. Braddock, S. M. Ahmad, G. T. Douglas, Tetrahedron Lett. 2004, 45, 6583.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmsVWqsrY%3D&md5=04e77f0f012bf5b9a338070a6f2f97d0CAS |

[38]  P. J. Pye, K. Rossen, R. A. Reamer, N. N. Tsou, R. P. Volante, P. J. Reider, J. Am. Chem. Soc. 1997, 119, 6207.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXktlelsLs%3D&md5=8fb71562fdbdce063f385e258638345cCAS |

[39]  H. J. Reich, D. J. Cram, J. Am. Chem. Soc. 1969, 91, 3517.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXktlyisbs%3D&md5=18b81a5710a0604bfe05f279a95948aaCAS |

[40]  D. C. Braddock, I. D. MacGilp, B. G. Perry, J. Org. Chem. 2002, 67, 8679.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xot1Ojtb0%3D&md5=78b06087324f1f1f2d1d0ce82c2d8db0CAS | 12444659PubMed |

[41]  A. Majumder, R. Gupta, A. Jain, Green Chem. Lett. Rev. 2013, 6, 151.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXisF2rsLc%3D&md5=83608940441240763215345729d3ca41CAS |

[42]  V. Sridharan, S. Perumal, C. Avendaño, J. C. Menéndez, Synlett 2006, 91.
         | 1:CAS:528:DC%2BD28XjvFyhsw%3D%3D&md5=70d982a6edd6a21c8b95f6265a47aaf1CAS |

[43]  S. Kotha, K. Lahiri, D. Kashinath, Tetrahedron 2002, 58, 9633.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovVSmtbg%3D&md5=c6e7430139417bfdf3c178706ed8b419CAS |

[44]  M. Miura, Angew. Chem. Int. Ed. 2004, 43, 2201.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjslOgtb8%3D&md5=9fe85aed7f9724bf3baa18215f9363e3CAS |

[45]  F. Bellina, A. Carpita, R. Rossi, Synthesis 2004, 2419.
         | 1:CAS:528:DC%2BD2cXptVKlurw%3D&md5=8220c85c9ad5d42b2eae3358cb1d54f3CAS |

[46]  CCDC-1022644 contains the supplementary crystallographic data for compound 7. This data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif

[47]  O. Illa, M. Namutebi, C. Saha, M. Ostovar, C. C. Chen, M. F. Haddow, S. Nocquet-Thibault, M. Lusi, E. M. McGarrigle, V. K. Aggarwal, J. Am. Chem. Soc. 2013, 135, 11951.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtF2qs7jI&md5=6e63d04abe6fb63e7414665aa04d4628CAS | 23902598PubMed |

[48]  N. E. Leadbeater, M. Marco, Angew. Chem. Int. Ed. 2003, 42, 1407.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtlygsLo%3D&md5=72d22ef1d03fecd226854f574ae0ba71CAS |

[49]  Rigaku, CrystalClear Version 1.4.0 2005 (Rigaku Americas Corporation: The Woodlands, TX).

[50]  Rigaku, PROCESS-AUTO 1998 (Rigaku Corporation: Tokyo).

[51]  O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsFSnsbg%3D&md5=742d0b697b608c74c3b4baa83bb3e93bCAS |

[52]  L. Palatinus, G. Chapuis, J. Appl. Cryst. 2007, 40, 786.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnslWqtrg%3D&md5=c3c8dd45df205de1b3cf2faee962bed7CAS |

[53]  G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVGhurzO&md5=59f548f8f29686b585f885edea91b42eCAS |