Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Accessing Brominated Natural Product Motifs Using Phosphoramidite Catalysis

Carl Recsei A and Christopher S. P. McErlean A B
+ Author Affiliations
- Author Affiliations

A School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia.

B Corresponding author. Email: christopher.mcerlean@sydney.edu.au

Australian Journal of Chemistry 68(4) 555-565 https://doi.org/10.1071/CH14539
Submitted: 1 September 2014  Accepted: 9 October 2014   Published: 19 November 2014

Abstract

This article describes the application of a first-generation phosphoramidite catalyst to the construction of the most commonly encountered subunits of bromine-containing natural products. The process is compared with previous efforts, and is found to be complementary to existing methods. Application of the process enables bromocarbocyclisations, bromoetherifications, and bromoallene formation using the common laboratory reagent N-bromosuccinimide.


References

[1]  G. W. Gribble, J. Nat. Prod. 1992, 55, 1353.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XmtVOhtbc%3D&md5=840d5be3d8eb19bd9dc761c900411388CAS |

[2]  G. Gribble, Naturally Occurring Organohalogen Compounds – A Comprehensive Update 2010 (Springer: New York, NY).

[3]  R. Kinnel, A. J. Duggan, T. Eisner, J. Meinwald, Tetrahedron Lett. 1977, 18, 3913.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  G. M. Konig, A. D. Wright, J. Nat. Prod. 1997, 60, 967.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1c%2FitlCqtg%3D%3D&md5=134d2028a04ac0c0a4ded047534fef75CAS | 9358636PubMed |

[5]  C. S. Vairappan, T. Kawamoto, H. Miwa, M. Suzuki, Planta Med. 2004, 70, 1087.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVOmsbfM&md5=3a5adf8026af39057e3aa72e92636ae5CAS | 15549668PubMed |

[6]  R. Wever, M. G. M. Tromp, B. E. Krenn, A. Marjani, M. Vantol, Environ. Sci. Technol. 1991, 25, 446.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXnvVOiuw%3D%3D&md5=96a67dd8cac33ecd4ea4440ef0972793CAS |

[7]  K. Watanabe, K. Umeda, M. Miyakado, Agric. Biol. Chem. 1989, 53, 2513.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXmt1Ohsrw%3D&md5=78c9031b93c6ad8cbb88d6824a2ae536CAS |

[8]  V. H. Argandona, A. Sanmartin, J. Rovirosa, Phytochemistry 1993, 32, 1159.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXks1Glsrs%3D&md5=8531ea3f421d3fe2c63c28c4eaf9b232CAS |

[9]  B.-G. Wang, J. B. Gloer, N.-Y. Ji, J.-C. Zhao, Chem. Rev. 2013, 113, 3632.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtlWgsLc%3D&md5=ad85bebde2a748e4f8ea8bd69df4f2e3CAS | 23448097PubMed |

[10]  T. Suzuki, M. Suzuki, A. Furusaki, T. Matsumoto, A. Kato, Y. Imanaka, E. Kurosawa, Tetrahedron Lett. 1985, 26, 1329.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXitFygsb0%3D&md5=a5cc62c9879999fd6dc7444751fa3eafCAS |

[11]  C. Recsei, C. S. P. McErlean, Tetrahedron Asymmetry 2010, 21, 149.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXivFGks7k%3D&md5=f08ab66d6171b2ee019b3a2e8c8b7d3fCAS |

[12]  C. Recsei, C. S. P. McErlean, Tetrahedron 2012, 68, 464.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFOqtrbF&md5=288b3f867a4f88d396dce6dba1e1d17cCAS |

[13]  C. Recsei, B. Chan, C. S. P. McErlean, J. Org. Chem. 2014, 79, 880.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpslejtw%3D%3D&md5=a982d6b1eceb41221fd126c3814817a3CAS | 24437567PubMed |

[14]  B. S. Moore, Nat. Prod. Rep. 2006, 23, 615.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XovVWmu7c%3D&md5=82bbbb311e2265c76c212e22d9563b4cCAS | 16874392PubMed |

[15]  M. Kuniyoshi, M. S. Marma, T. Higa, G. Bernardinelli, C. W. Jefford, J. Nat. Prod. 2001, 64, 696.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtlyqurc%3D&md5=bb7a56cbada7265d6b8e5cafcffdc6ecCAS | 11421726PubMed |

[16]  K. J. Bonney, D. C. Braddock, J. Org. Chem. 2012, 77, 9574.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFCrurzF&md5=94b1e7a27d23fd38587f32ca0ea34888CAS | 23088510PubMed |

[17]  T. Okino, Y. Nogata, U.S. Patent 2010204315A1 2009.

[18]  S. A. Snyder, D. S. Treitler, Angew. Chem. Int. Ed. Engl. 2009, 48, 7899.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1ektLzF&md5=33dd8dc82bc9760d70ea0f7bc9b77b8fCAS | 19757473PubMed |

[19]  S. A. Snyder, D. S. Treitler, A. P. Brucks, J. Am. Chem. Soc. 2010, 132, 14303.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtF2nu7vO&md5=eaeeebf846e86fbdcc19159c375d3497CAS | 20858010PubMed |

[20]  S. A. Snyder, D. S. Treitler, Org. Synth. 2011, 88, 54.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xks1ersLc%3D&md5=0ec4d7821f47f6472492ae15f3e9866cCAS |

[21]  It is also possible that distinct mechanisms operate in the non-polar and polar media.

[22]  S. A. Snyder, D. S. Treitler, A. P. Brucks, W. Sattler, J. Am. Chem. Soc. 2011, 133, 15898.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFygu7vO&md5=752cca46aac3346974926957972223d0CAS | 21919540PubMed |

[23]  S. A. Snyder, A. P. Brucks, D. S. Treitler, I. Moga, J. Am. Chem. Soc. 2012, 134, 17714.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsV2rs7rN&md5=2574961941a57dc0bb3b418f470ef36aCAS | 23057834PubMed |

[24]  D. Wischang, O. Brücher, J. Hartung, Coord. Chem. Rev. 2011, 255, 2204.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVWhurbM&md5=21714ed0c74aef935335a3fa19fe8800CAS |

[25]  J. N. Carter-Franklin, A. Butler, J. Am. Chem. Soc. 2004, 126, 15060.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovFSlt74%3D&md5=9f71e0f0fcc5ee58b9e3273d81641d97CAS | 15548002PubMed |

[26]  J. N. Franklin, The Role of Vanadium Bromoperoxidase in the Biosynthesis of Halogenated Marine Natural Products 2003, Ph.D. thesis, University of California, Santa Barbara.

[27]  I. C. Gonzalez, C. J. Forsyth, Org. Lett. 1999, 1, 319.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjslWmtr4%3D&md5=cf4b4fa520fd2e8257bae5e788d7e61dCAS | 10822569PubMed |

[28]  I. C. González, C. J. Forsyth, J. Am. Chem. Soc. 2000, 122, 9099.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  M. A. Casadei, C. Galli, L. Mandolini, J. Am. Chem. Soc. 1984, 106, 1051.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXosFSitw%3D%3D&md5=bdc0519d00fd0cc651aaf2ef11b8f8d0CAS |

[30]  For a summary of these through-space enhancements, see the Supplementary Material.

[31]  T. Kato, I. Ichinose, J. Chem. Soc., Perkin Trans. 1 1980, 1051.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXls1yns7c%3D&md5=ed3f9ca7d947d1e2b26bdef2e68975d6CAS |

[32]  A. G. González, J. D. Martín, C. Pérez, M. A. Ramírez, Tetrahedron Lett. 1976, 17, 137.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  H.-M. Shieh, G. D. Prestwich, Tetrahedron Lett. 1982, 23, 4643.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXktVGns7k%3D&md5=2957994ddd9cf1b2dc1326a8b38160a9CAS |

[34]  T. Kato, M. Mochizuki, T. Hirano, S. Fujiwara, T. Uyehara, J. Chem. Soc., Chem. Commun. 1984, 1077.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXmt1Cnuw%3D%3D&md5=79e465d0a6285776bc3b19aca0e6aaa2CAS |

[35]  A. Tanaka, T. Oritani, Biosci. Biotechnol. Biochem. 1995, 59, 516.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXkvVerurw%3D&md5=7e5f030ac975fc3f3696f795a4e1930cCAS |

[36]  T. R. Hoye, M. J. Kurth, J. Org. Chem. 1978, 43, 3693.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXls1ektrs%3D&md5=f6095fa543aa67359b53d2724e289b2bCAS |

[37]  L. E. Wolinsky, D. J. Faulkner, J. Org. Chem. 1976, 41, 597.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XptVehsA%3D%3D&md5=b2c1ff2980a97b39f919c67a4f835585CAS |

[38]  A. Tanaka, M. Sato, K. Yamashita, Agric. Biol. Chem. 1990, 54, 121.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXkvFOrs7c%3D&md5=2287d749f405dd73ed8a49f11d445205CAS |

[39]  Y. Tamaru, S.-i. Kawamura, Z.-i. Yoshida, Tetrahedron Lett. 1985, 26, 2885.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XhtV2gur0%3D&md5=f76cfb3c38e4a7f24847ed5ec36bbfc2CAS |

[40]  T. Kato, I. Ichinose, A. Kamoshida, Y. Kitahara, J. Chem. Soc., Chem. Commun. 1976, 518.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28Xls1Sgtr8%3D&md5=cebaa0315c16c0273f0deb80180d6197CAS |

[41]  E. E. van Tamelen, E. J. Hessler, Chem. Commun. 1966, 411.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF28XksFKqt7Y%3D&md5=01d880733754b4175bca0cb256c77ffdCAS |

[42]  D. C. Braddock, R. Bhuva, Y. Perez-Fuertes, R. Pouwer, C. A. Roberts, A. Ruggiero, E. S. E. Stokes, A. J. P. White, Chem. Commun. 2008, 1419.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtFShtbc%3D&md5=2c27376fa426a316bb346d7d8c6c2b3bCAS |

[43]  F. Bellina, A. Carpita, L. Mannocci, R. Rossi, Eur. J. Org. Chem. 2004, 2610.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsFentrg%3D&md5=10d2056d1c4ccad7dea3eb6a574439a4CAS |

[44]  C. Luethy, P. Konstantin, K. G. Untch, J. Am. Chem. Soc. 1978, 100, 6211.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXjvVGlsg%3D%3D&md5=c39892644c9a82486e2398028d21e366CAS |

[45]  C. Mukai, Y.-i. Sugimoto, Y. Ikeda, M. Hanaoka, Tetrahedron 1998, 54, 823.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXls1Kitw%3D%3D&md5=439e13236c0be06a6bc97c518ea547d0CAS |

[46]  L. Crombie, L. J. Rainbow, J. Chem. Soc., Perkin Trans. 1 1994, 673.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXksFKqt7o%3D&md5=74c7321cb48484eff515e28f93d8d80bCAS |

[47]  S. E. Denmark, M. T. Burk, Proc. Natl. Acad. Sci. USA 2010, 107, 20655.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFejt7nK&md5=69b378a8e6219b7f18ea932f2ac72c47CAS | 20705900PubMed |

[48]  V. R. Campos, P. A. Abreu, H. C. Castro, C. R. Rodrigues, A. K. Jordao, V. F. Ferreira, M. C. B. V. de Souza, F. C. Santos, L. A. Moura, T. S. Domingos, C. Carvalho, E. F. Sanchez, A. L. Fuly, A. C. Cunha, Bioorg. Med. Chem. 2009, 17, 7429.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1ylur7F&md5=30f1405b8c3c51ec9506c149a39a0557CAS | 19815419PubMed |

[49]  V. P. Kukhar, E. I. Sagina, Zh. Obshch. Khim. 1979, 49, 1470.
         | 1:CAS:528:DyaE1MXlsVSqsL8%3D&md5=c6200f432b614f1722de31563484dc6bCAS |

[50]  S. Albrecht, E. Herrmann, German Patent DD238980A1 1986.

[51]  A. G. Ross, X. Li, S. J. Danishefsky, J. Am. Chem. Soc. 2012, 134, 16080.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht12ru7nF&md5=012a80308edf46060723fbf68edbacb7CAS | 22950514PubMed |

[52]  N. De Kimpe, in e-EROS Encyclopedia of Reagents for Organic Synthesis 2001 (John Wiley & Sons, Ltd: Hoboken, NJ). Available at: http://onlinelibrary.wiley.com/doi/10.1002/047084289X.rt008/full

[53]  G. J. Fox, G. Hallas, J. D. Hepworth, K. N. Paskins, Org. Synth. 1976, 55, 20..
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28Xkt1SksL0%3D&md5=7e672a46a93e04c0056db009eb04ed9aCAS |

[54]  S. Caddick, S. Shanmugathasan, D. Brasseur, V. M. Delisser, Tetrahedron Lett. 1997, 38, 5735.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlsFCjtrw%3D&md5=6717a73dabaf797a4b744eca350c13eeCAS |