Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Nickel Oxide Nanoparticle-Assembled Microspheres with a High Rate Capability for Lithium Storage

Xiujuan Wang A , Gang Wang B , Gaohong Zhai A C and Hui Wang A C
+ Author Affiliations
- Author Affiliations

A Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry & Materials Science, Northwest University, Xi’an 710069, China.

B National Key Laboratory of Photoelectric Technology and Functional Materials (Culture Base), National Photoelectric Technology and Functional Materials & Application International Cooperation Base, Institute of Photonics & Photon Technology, Northwest University, Xi’an 710069, China.

C Corresponding authors. Email: zgh@nwu.edu.cn; huiwang@nwu.edu.cn

Australian Journal of Chemistry 68(6) 964-969 https://doi.org/10.1071/CH14418
Submitted: 1 July 2014  Accepted: 2 October 2014   Published: 17 November 2014

Abstract

This paper presents the massive preparation of nickel oxide nanoparticle-assembled mesoporous microspheres using acid-treated carbon microspheres as sacrificial templates. The microstructure and morphology of the hollow NiO microspheres are characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, and N2 adsorption–desorption methods. Scanning electron microscopy and transmission electron microscopy images reveal that these hollow spheres are assembled by NiO particles with sizes of ~20 nm. The nickel oxide nanoparticle-assembled mesoporous microspheres feature high surface area and good electronic conductivity, leading to high capacity and excellent cycling performance as anode materials for lithium-ion batteries.


References

[1]  K. T. Lee, S. Jeong, J. Cho, Acc. Chem. Res. 2013, 46, 1161.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvVSisbg%3D&md5=a195b5ddb6553c004d866b2c04efbf51CAS | 22509931PubMed |

[2]  L. W. Ji, Z. Lin, M. Alcoutlabi, X. W. Zhang, Energy Environ. Sci. 2011, 4, 2682.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFSrs7rN&md5=c6e6d9723607836b95bca9155dde30cdCAS |

[3]  F. Cheng, J. J. Chen, Mater. Chem. 2011, 21, 9841.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotFSmsrw%3D&md5=7402a63346cb52a3f70ecf8a5bb2cc98CAS |

[4]  Y. Lee, M. R. Jo, K. Song, K. M. Nam, J. T. Park, Y. M. Kang, ACS Appl. Mater. Interfaces 2012, 4, 3459.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XoslamtL4%3D&md5=ca5dca9a952def3e8c16ebec0cb6a88cCAS | 22709146PubMed |

[5]  S. H. Lee, S. H. Yu, J. E. Lee, A. H. Jin, D. J. Lee, N. Lee, H. Jo, K. Shin, T. Y. Ahn, Y. W. Kim, Nano Lett. 2013, 13, 4249.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtF2rurbO&md5=405893562ea672562bde6cb404e29b35CAS | 23902532PubMed |

[6]  D. D. Han, P. C. Xu, X. Y. Jing, J. Wang, D. L. Song, J. Y. Liu, M. L. Zhang, J. Solid State Chem. 2013, 203, 60.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpsFGjt7s%3D&md5=2dc4a82183d19756c234c972c9d49b6bCAS |

[7]  J. Liu, W. Liu, K. F. Chen, S. M. Ji, Y. C. Zhou, Y. L. Wan, D. F. Xue, P. Hodgson, Y. C. Li, Chem. – Eur. J. 2013, 19, 9811.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpvVemsL8%3D&md5=9009dca30226460c172b41fb8ddc4170CAS | 23788047PubMed |

[8]  L. X. Liu, Y. Y. Guo, Y. P. Wang, X. J. Yang, S. X. Wang, H. Guo, Electrochim. Acta 2013, 114, 42.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFOitr7K&md5=09f56e690878f6f6eeeae9631dbc56beCAS |

[9]  F. Y. Cheng, J. Liang, Z. L. Tao, J. Chen, Adv. Mater. 2011, 23, 1695.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkslemu7s%3D&md5=4e914051ee060d16043b010f61da515eCAS |

[10]  K. T. Park, F. Xia, S. W. Kim, S. B. Kim, T. Song, U. Paik, W. I. J. Park, PhysChemComm 2013, 117, 1037.
         | 1:CAS:528:DC%2BC38XhvVyksbvI&md5=5e4583cd23ede09b0de027665c89917bCAS |

[11]  Y. S. Yun, J. M. Kim, H. H. Park, J. Lee, Y. S. Huh, H.-J. Jin, J. Power Sources 2013, 244, 747.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslOrsrbO&md5=0d5633eec4f451bbc8c1578f5388f29eCAS |

[12]  H. M. Shiri, M. Aghazadeh, J. Electrochem. Soc. 2012, 159, E132.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmvVygsb8%3D&md5=fca726241a7915f70c3af2f71fdcd7e5CAS |

[13]  A. Banerjee, U. Singh, V. Aravindan, M. Srinivasan, S. Ogale, Nano Energy 2013, 2, 1158.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXosVCiurs%3D&md5=d8d8fc3cbddfa96f40e3b2ff38c80c0aCAS |

[14]  J. L. Zhong, O. B. Chae, W. Shi, J. Z. Fan, H. Y. Mi, S. M. J. Oh, Mater. Res. 2013, 28, 2577.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsV2nsrfF&md5=7415db14060057aaa9aac06d5a0694d6CAS |

[15]  W. Wei, Z. H. Wang, Z. Liu, Y. Liu, L. He, D. Z. Chen, A. Umar, L. Guo, J. H. J. Li, J. Power Sources 2013, 238, 376.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXotF2is7Y%3D&md5=e7f58950b3293ae9a8cab649f725f1cfCAS |

[16]  Z. C. Bai, Y. W. Zhang, N. Fan, C. L. Guo, B. Tang, Mater. Lett. 2014, 119, 16.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXis1Sitb0%3D&md5=38f0a1f0776f0e570d5f411d771c3127CAS |

[17]  R. Q. Liu, N. Li, G. F. Xia, D. Y. Li, C. Wang, N. Xiao, D. Tian, G. Wu, Mater. Lett. 2013, 93, 243.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlaqur0%3D&md5=2f58e5a287a78ba4f3575e95508479a7CAS |

[18]  Y. Guan, X. Meng, D. Qiu, Langmuir 2014, 30, 3681.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXksVWit78%3D&md5=25b35075a3142148228fefecea816d8fCAS | 24641203PubMed |

[19]  Y. S. Li, J. L. Shi, Adv. Mater. 2014, 26, 3176.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXltFKmtLs%3D&md5=9066d374f7826fb0cec11365a71c3ef1CAS |

[20]  J. H. Pan, Q. Z. Huang, Z. Y. Koh, D. Neo, X. Z. Wang, Q. Wang, ACS Appl. Mater. Interfaces 2013, 5, 6292.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptVCitLk%3D&md5=0970cde00b026d5181200513a1fcfd60CAS | 23751248PubMed |

[21]  X. W. Lou, L. A. Archer, Z. C. Yang, Adv. Mater. 2008, 20, 3987.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVartbnK&md5=d0c5b67dfc0045f8684d00b6ea06defaCAS |

[22]  J. H. Pan, H. Q. Dou, Z. G. Xiong, C. Xu, J. Z. Ma, X. S. J. Zhao, Mater. Chem. 2010, 20, 4512.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsFCjt7o%3D&md5=405583a12b6ba06d22b56ca203acc4c5CAS |

[23]  J. Hu, M. Chen, X. Fang, L. Wu, Chem. Soc. Rev. 2011, 40, 5472.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlahsr7N&md5=7904f222af84c53a8419c62e689f2ac2CAS | 21799974PubMed |

[24]  X. H. Huang, J. P. Tu, C. Q. Zhang, F. Zhou, Electrochim. Acta 2010, 55, 8981.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlaiurjL&md5=10b2ff34241cb73a760930d860b8b3eaCAS |

[25]  Z. C. Bai, Z. C. Ju, C. L. Guo, Y. T. Qian, B. Tang, S. L. Xiong, Nanoscale 2014, 6, 3268.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjt1yltrs%3D&md5=3af86ca4bb8df2a17a3ec2ac3cc90b26CAS |

[26]  M. Sasidharan, N. Gunawardhana, C. Senthil, M. J. Yoshio, J. Mater. Chem. A 2014, 2, 7337.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmslGqsr0%3D&md5=01a344a13d6a3231e5fdce3ef4dab184CAS |

[27]  Q. Li, Y. J. Chen, T. Yang, D. N. Lei, G. H. Zhang, L. Mei, L. B. Chen, Q. H. Li, T. H. Wang, Electrochim. Acta 2013, 90, 80.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXit1Kgtr4%3D&md5=f2fda0349bd2b60a9f2b520cb8aa7242CAS |

[28]  H. G. Cha, J. H. Sohn, Y. Park, K. J. Lee, M. H. Jung, J. Lee, W. Shin, M. J. Kang, D. Y. Kima, Y. S. Kang, RSC Adv. 2012, 2, 9786.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVCqtbvN&md5=5d22fc7edf6f0adbda2e25519415adaaCAS |

[29]  D. Xie, Q. M. Su, Z. M. Dong, J. Zhang, G. H. Du, CrystEngComm 2013, 15, 8314.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFCrsLnF&md5=984cba8c7b0e001325903b6d32546c20CAS |

[30]  D. Xie, W. Yuan, Z. Dong, Q. Su, J. Zhang, G. Du, Electrochim. Acta 2013, 92, 87.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtVeit7c%3D&md5=57d7ad7d35a255f7bbb5fdc2c483b407CAS |

[31]  A. Brandt, A. J. Balducci, J. Power Sources 2013, 230, 44.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFelt7Y%3D&md5=8aef7a5a554242956e6e50a2e890690bCAS |