Synthesis and Thermal Stability of New Polynitrostilbenes
Jianping Wei A , Fangmei Li A , Junhui Xu A and Xinhua Peng A B
+ Author Affiliations
- Author Affiliations
A School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
B Corresponding author. Email: xhpeng@mail.njust.edu.cn
Australian Journal of Chemistry 68(6) 919-925 https://doi.org/10.1071/CH14400
Submitted: 10 June 2014 Accepted: 3 September 2014 Published: 20 November 2014
Abstract
New polynitrostilbenes were directly synthesised by the Knoevenagel condensation of aromatic aldehydes with nitrotoluenes. The differential scanning calorimetry results demonstrated that the introduction of an amino group and C=C double bonds could improve the thermal stability.
References
[1] K. G. Shipp, J. Org. Chem. 1964, 29, 2620.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXks1Wnsb8%3D&md5=50b129e1eba185bbee61e7fbf5746c1cCAS |
[2] K. G. Shipp, L. A. Kaplan, J. Org. Chem. 1966, 31, 857.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF28XmslCmsA%3D%3D&md5=8247f1e622baea93dbe03431c277613cCAS |
[3] K. G. Shipp, L. A. Kaplan, M. E. Sitzmann, J. Org. Chem. 1972, 37, 1966.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XksVOksbg%3D&md5=11073e1f3ed2d651e1bb291a2b0e7a74CAS |
[4] G. P. Sollott, J. Org. Chem. 1982, 47, 2471.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XitFOgt7c%3D&md5=26e0b5bf28e4ec4e641f23de45db4dbeCAS |
[5] Z. G. Feng, B. R. Chen, Propellants, Explos., Pyrotech. 1991, 16, 12.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhvVymsbY%3D&md5=34763185ac1db0ce01244c6799b3ce68CAS |
[6] Z. G. Feng, B. R. Chen, Propellants, Explos., Pyrotech. 1992, 17, 237.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXovFGg&md5=bb27468cf091bc96223eeed9b11dc423CAS |
[7] X. H. Peng, T. Y. Chen, C. X. Lu, R. K. Sun, Org. Prep. Proced. Int. 1995, 27, 475.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXntFGlsbs%3D&md5=2ade16418e2a45905e8a0d9956200071CAS |
[8] K. K. Kalninsh, A. D. Kutsenko, A. S. Archegova, J. Struct. Chem. 1998, 39, 520.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjsFGgsLc%3D&md5=c7188da21b2a1cda59bde39575b7c740CAS |
[9] L. Q. Wang, Y. H. Liu, T. L. Zhang, Chin. J. Chem. 2007, 25, 1044.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotVymurk%3D&md5=8e68bcbab029efc7af8f0b63681a1c36CAS |
[10] A. J. Davidson, R. P. Dias, D. M. Dattelbaum, C. S. Yoo, J. Chem. Phys. 2011, 135, 174507.
| Crossref | GoogleScholarGoogle Scholar | 22070306PubMed |
[11] I. V. Omelchenko, O. V. Shishkin, L. Gorb, F. C. Hill, J. Leszczynski, Struct. Chem. 2012, 23, 1585.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVenurnM&md5=1bab86bc4f7cb05536dd5dc4f1d38a07CAS |
[12] C. D. Hutchinson, V. K. Mohan, R. W. Millar, Propellants, Explos., Pyrotech. 1984, 9, 161.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXptVCr&md5=ed71230b5c53f29d01d98c48766e46f5CAS |
[13] I. Gallardo, G. Guirado, J. Marquet, J. Org. Chem. 2002, 67, 2548.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xit1OgsLY%3D&md5=dbdb67cd09d9fd7246bcf117fb176f85CAS | 11950300PubMed |
[14] J. H. Xu, F. M. Li, J. P. Wei, X. H. Peng, J. Chem. Res. 2014, 38, 240.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVWrsrzI&md5=3760a09d375565689d973345dfd73badCAS |
[15] D. StC. Black, N. Kumar, D. B. McConnell, Tetrahedron 2001, 57, 2203.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhslyjt7w%3D&md5=72766aec762ad32839310f3b850ff2e5CAS |
[16] S. H. Li, H. P. Huang, S. Y. Yu, X. P. Li, Chin. J. Chem. 2006, 24, 1225.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpvF2qur8%3D&md5=6d375261ce4a9ccd0c0ce11f3d50ca11CAS |
[17] M. J. Jorgenson, D. R. Hartter, J. Am. Chem. Soc. 1963, 85, 878.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXls1Gktg%3D%3D&md5=4cd1cb3d9ce96785d81339fb0244c6c5CAS |
[18] A. T. Nielsen, S. L. Christian, A. P. Chafin, W. S. Wilson, J. Org. Chem. 1994, 59, 1714.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXivFyitrY%3D&md5=6b8cc0244c045dba303b95ff334bdabeCAS |
[19] A. T. Nielsen, R. A. Henry, W. P. Norris, R. L. Atkins, D. W. Moore, A. H. Lepie, C. L. Coon, R. J. Spanggord, D. V. H. Son, J. Org. Chem. 1979, 44, 2499.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXksFKms70%3D&md5=963c0d9538327f0f2a78054ac845d584CAS |
[20] J. Wang, L. L. Yan, J. Qu, Chem. Commun. 2009, 34, 5144.
| Crossref | GoogleScholarGoogle Scholar |
[21] V. C. Armstrong, R. B. Moodie, J. Chem. Soc. B 1969, 934.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXlt1eisLY%3D&md5=94b792588cc5384a529c5138f428e531CAS |
[22] H. M. Jiang, Z. Zheng, Z. M. Li, X. L. Wang, Ind. Eng. Chem. Res. 2006, 45, 8617.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFyht77K&md5=47a2dcf553017a223a8e9109f83d7050CAS |
[23] J. Fauvarque, Pure Appl. Chem. 1996, 68, 1713.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlvFSqt7c%3D&md5=ae18d9bdfe63b3faad6c44b8b8849e1cCAS |