Major Differences Between Mononuclear and Binuclear Manganese Carbonyl Cyanides and Isoelectronic Binary Chromium Carbonyls Arising from Basicity of the Cyanide Nitrogen Atom*
Ruixue Jia A , Chaoyang Wang A , Luo Qiong A C , Qian-Shu Li A , Yaoming Xie B , R. Bruce King A B C and Henry F. SchaeferA Ministry of Education Key Laboratory of Theoretical Environmental Chemistry, Center for Computational Quantum Chemistry, South China Normal University, Guangzhou 510631, China.
B Department of Chemistry and Center for Computational Chemistry, University of Georgia, Athens, GA 30602, USA.
C Corresponding authors. Email: kelly.luo@126.com; rbking@chem.uga.edu
Australian Journal of Chemistry 67(9) 1318-1323 https://doi.org/10.1071/CH14227
Submitted: 14 April 2014 Accepted: 7 May 2014 Published: 4 June 2014
Abstract
The manganese carbonyl cyanides Mn(CO)n(CN) and Mn2(CO)n(CN)2 have been investigated by density functional theory. The lowest energy structure for Mn(CO)5(CN) is found to be the experimentally known C-bonded cyanide. The experimentally unknown N-bonded Mn(CO)5(NC) lies ~60 kJ mol–1 above its cyanide isomer. The Mn(CO)4(CN) isomers are obtained by removal of a CO group in various ways from Mn(CO)5(CN) or Mn(CO)5(NC). Three structures, cyanide Mn(CO)3(CN), isocyanide Mn(CO)3(NC), and Mn(CO)3(η2-CN), are found for the tricarbonyl. All low-energy binuclear Mn2(CO)n(CN)2 structures have two end-to-end bridging CN groups. These two η2-CN bridges can be oriented in the same or opposite directions. The Mn2(CO)7(CN)2 structures of this type can be derived from these Mn2(CO)8(CN)2 structures by removal of a CO group with relatively little change in the remainder of the structure. These low-energy Mn2(CO)n(CN)2 structures (n = 8, 7) are very different from the previously studied isoelectronic Cr2(CO)n+2 structures in which low-energy end-to-end CO bridged structures are not found.
References
[1] A. Job, A. Cassal, Compt. Rend. Acad. Sci. Paris 1926, 183, 392.| 1:CAS:528:DyaB28XislCmtg%3D%3D&md5=30271a19888c1fb19ab9bd74dfe18fe4CAS |
[2] Cr2(CO)11: N. A. Richardson, Y. Xie, R. B. King, H. F. Schaefer, J. Phys. Chem. 2001, 105, 11134.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXot1yksrs%3D&md5=05237abc80b3693aac6ff2687aab6917CAS |
[3] Cr2(CO)10: S. Li, N. A. Richardson, Y. Xie, R. B. King, H. F. Schaefer, Faraday Discuss. 2003, 124, 315.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtFertrk%3D&md5=ac226cf3c0627623a5db9ed908112551CAS | 14527223PubMed |
[4] Cr2(CO)9: S. Li, N. A. Richardson, R. B. King, H. F. Schaefer, J. Phys. Chem. 2003, 107, 10118.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosVCqu7Y%3D&md5=ca0d9bc12667f8950d383155cb6a22ffCAS |
[5] Cr2(CO)8: S. Li, R. B. King, H. F. Schaefer, J. Phys. Chem. 2004, 108, 6879.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvVSgsrs%3D&md5=574e85161139c09b045b34fc99b60c7aCAS |
[6] B. Chiswell, L. M. Venanzi, J. Chem. Soc. A 1966, 417.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF28Xot1SjsQ%3D%3D&md5=6ed4c6ef84de4f2a3699af3de6bb6902CAS |
[7] W. Clegg, S. Morton, Acta Crystallogr. B 1978, 34, 1707.
| Crossref | GoogleScholarGoogle Scholar |
[8] L. Dahl, C.-H. Wei, Acta Crystallogr. 1963, 16, 611.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXksF2js7o%3D&md5=c20311c90777d254c0754f0465ff8b61CAS |
[9] J. A. Davies, M. El-Ghanam, A. A. Pinkerton, Acta Crystallogr. C 1991, 47, 1356.
| Crossref | GoogleScholarGoogle Scholar |
[10] T. Ziegler, J. Autschbach, Chem. Rev. 2005, 105, 2695.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtl2ns7o%3D&md5=ec4fff4082ec9087de1e8052f6a8b44cCAS | 15941226PubMed |
[11] M. Bühl, H. Kabrede, J. Chem. Theory Comput. 2006, 2, 1282.
| Crossref | GoogleScholarGoogle Scholar |
[12] M. Brynda, L. Gagliardi, P. O. Widmark, P. P. Power, B. O. Roos, Angew. Chem. Int. Ed. 2006, 45, 3804.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvFClsL8%3D&md5=65a405e36fb3babc987307d5e8655ae9CAS |
[13] N. Sieffert, M. Bühl, J. Am. Chem. Soc. 2010, 132, 8056.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmt12rsbc%3D&md5=c1b0c2915812ae8346f131b96bbd3fb2CAS | 20481632PubMed |
[14] P. Schyman, W. Lai, H. Chen, Y. Wang, S. Shaik, J. Am. Chem. Soc. 2011, 133, 7977.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsVyhur0%3D&md5=3148cbcfb760d694aef5af5601d3514cCAS | 21539368PubMed |
[15] R. D. Adams, W. C. Pearl, Y. O. Wong, Q. Zhang, M. B. Hall, J. R. Walensky, J. Am. Chem. Soc. 2011, 133, 12994.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsF2ju7c%3D&md5=e3980f50f1531cf23571c68c4409210aCAS | 21786819PubMed |
[16] R. Lonsdale, J. Olah, A. J. Mulholland, J. N. Harvey, J. Am. Chem. Soc. 2011, 133, 15464.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFGqu77M&md5=26ddc98f4c7f75a96332bc0dcefeef44CAS | 21863858PubMed |
[17] A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisVWgtrw%3D&md5=bd225cbbb5eb5750cbd4a95028b56b80CAS |
[18] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktFWrtbw%3D&md5=b184c28582a539788de66bd09b952e08CAS |
[19] A. D. Becke, Phys. Rev. A 1988, 38, 3098.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmtlOhsLo%3D&md5=89a4d6eea189a0acadf44cab2961b4a3CAS | 9900728PubMed |
[20] J. P. Perdew, Phys. Rev. B 1986, 33, 8822.
| Crossref | GoogleScholarGoogle Scholar |
[21] F. Furche, J. P. Perdew, J. Chem. Phys. 2006, 124, 044103.
| Crossref | GoogleScholarGoogle Scholar | 16460145PubMed |
[22] H. Wang, Y. Xie, R. B. King, H. F. Schaefer, J. Am. Chem. Soc. 2005, 127, 11646.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmslemtb0%3D&md5=5aae6571db86eae5461fb80027ca5493CAS | 16104740PubMed |
[23] H. Wang, Y. Xie, R. B. King, H. F. Schaefer, J. Am. Chem. Soc. 2006, 128, 11376.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnvFOqsr4%3D&md5=f9bbb122f30e9f9ca2f6037f0a418430CAS | 16939260PubMed |
[24] T. H. Dunning, J. Chem. Phys. 1970, 53, 2823.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXltVaisbY%3D&md5=e80b3ba83d135470740e0df086e8e095CAS |
[25] S. Huzinaga, J. Chem. Phys. 1965, 42, 1293.
| Crossref | GoogleScholarGoogle Scholar |
[26] A. J. H. Wachters, J. Chem. Phys. 1970, 52, 1033.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXotlSrtQ%3D%3D&md5=9a94418800b35fd914ef09bdee83ad16CAS |
[27] D. M. Hood, R. M. Pitzer, H. F. Schaefer, J. Chem. Phys. 1979, 71, 705.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXltFakur4%3D&md5=e23ceec5c95534acff2ae7050eaed234CAS |
[28] (a) M. J. Frisch, et al., GAUSSIAN 03 (Revision E 01 and C 02) 2004 (Gaussian, Inc.: Wallingford, CT).
(b) M. J. Frisch, et al., GAUSSIAN 09 (Revision B.01) 2010 (Gaussian, Inc.: Wallingford, CT) (see Supplementary Material for details).
[29] B. N. Papas, H. F. Schaefer, J. Mol. Struct. 2006, 768, 175.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xps1Wnt70%3D&md5=3ade5ecb3792de43a427f6fd8499441fCAS |
[30] S. J. LaPlaca, J. A. Ibers, W. C. Hamilton, J. Am. Chem. Soc. 1964, 86, 2288.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXkt1ait70%3D&md5=d256182c849ff806f0b030d7a7c62182CAS |
[31] S. J. La Placa, W. C. Hamilton, J. A. Ibers, Inorg. Chem. 1964, 3, 1491.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXkvVylu7s%3D&md5=6ad7e02107be48a350d88c84224f656aCAS |
[32] X. M. Liu, C. Y. Wang, Q. S. Li, Y. Xie, R. B. King, H. F. Schaefer, Dalton Trans. 2009, 3774.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsFWhtLw%3D&md5=fe1bcee855f1c0b94ab84e4976b2fea1CAS | 19417943PubMed |
[33] L. F. Dahl, R. E. Rundle, Acta Crystallogr. 1963, 16, 419.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXktFyrsb0%3D&md5=f28bb6e8dd8b014f9c760a9fa67ed549CAS |
[34] M. Martin, B. Rees, A. Mitschler, Acta Crystallogr. B 1982, 38, 6.
| Crossref | GoogleScholarGoogle Scholar |
[35] V. Jonas, W. Thiel, J. Chem. Phys. 1995, 102, 8474.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlvFegtL0%3D&md5=088b5cd3be60e63fdd82c9a85a00a39bCAS |
[36] I. Silaghi-Dumitrescu, T. E. Bitterwolf, R. B. King, J. Am. Chem. Soc. 2006, 128, 5342.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtVygtbg%3D&md5=2a158e2d6ffc0edae6011274b26564b2CAS | 16620096PubMed |
[37] A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 1988, 88, 899.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmtlOitbw%3D&md5=52299b0d9e8f1e932b8760cc4ffafdffCAS |
[38] P. K. Pearson, G. L. Blackman, H. F. Schaefer, B. Roos, U. Wahlgren, Astrophys. J. 1973, 184, L19.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXkvF2jt7k%3D&md5=25f263d998476f38c078f4aa3eac10c3CAS |
[39] Y. Zhao, D. G. Truhlar, J. Chem. Phys. 2006, 125, 194101.
| Crossref | GoogleScholarGoogle Scholar | 17129083PubMed |
[40] Y. Zhao, D. G. Truhlar, Acc. Chem. Res. 2008, 41, 157.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksV2iug%3D%3D&md5=29db5dc0f646fd694351ff1dd7949bc8CAS | 18186612PubMed |
[41] T. H. Dunning, J. Chem. Phys. 1989, 90, 1007.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXksVGmtrk%3D&md5=5b651c951fff4ed0182934ad121de2f0CAS |
[42] D. E. Woon, T. H. Dunning, J. Chem. Phys. 1993, 98, 1358.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhtlans7Y%3D&md5=d19c5942e7fd943a4408bd91f427fa93CAS |
[43] E. W. Abel, G. Wilkinson, J. Chem. Soc. 1959, 1501.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG1MXovVakug%3D%3D&md5=f4d060b3e42b2a0325817eef518a36aeCAS |