Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Major Differences Between Mononuclear and Binuclear Manganese Carbonyl Cyanides and Isoelectronic Binary Chromium Carbonyls Arising from Basicity of the Cyanide Nitrogen Atom*

Ruixue Jia A , Chaoyang Wang A , Luo Qiong A C , Qian-Shu Li A , Yaoming Xie B , R. Bruce King A B C and Henry F. Schaefer III B
+ Author Affiliations
- Author Affiliations

A Ministry of Education Key Laboratory of Theoretical Environmental Chemistry, Center for Computational Quantum Chemistry, South China Normal University, Guangzhou 510631, China.

B Department of Chemistry and Center for Computational Chemistry, University of Georgia, Athens, GA 30602, USA.

C Corresponding authors. Email: kelly.luo@126.com; rbking@chem.uga.edu

Australian Journal of Chemistry 67(9) 1318-1323 https://doi.org/10.1071/CH14227
Submitted: 14 April 2014  Accepted: 7 May 2014   Published: 4 June 2014

Abstract

The manganese carbonyl cyanides Mn(CO)n(CN) and Mn2(CO)n(CN)2 have been investigated by density functional theory. The lowest energy structure for Mn(CO)5(CN) is found to be the experimentally known C-bonded cyanide. The experimentally unknown N-bonded Mn(CO)5(NC) lies ~60 kJ mol–1 above its cyanide isomer. The Mn(CO)4(CN) isomers are obtained by removal of a CO group in various ways from Mn(CO)5(CN) or Mn(CO)5(NC). Three structures, cyanide Mn(CO)3(CN), isocyanide Mn(CO)3(NC), and Mn(CO)32-CN), are found for the tricarbonyl. All low-energy binuclear Mn2(CO)n(CN)2 structures have two end-to-end bridging CN groups. These two η2-CN bridges can be oriented in the same or opposite directions. The Mn2(CO)7(CN)2 structures of this type can be derived from these Mn2(CO)8(CN)2 structures by removal of a CO group with relatively little change in the remainder of the structure. These low-energy Mn2(CO)n(CN)2 structures (n = 8, 7) are very different from the previously studied isoelectronic Cr2(CO)n+2 structures in which low-energy end-to-end CO bridged structures are not found.


References

[1]  A. Job, A. Cassal, Compt. Rend. Acad. Sci. Paris 1926, 183, 392.
         | 1:CAS:528:DyaB28XislCmtg%3D%3D&md5=30271a19888c1fb19ab9bd74dfe18fe4CAS |

[2]  Cr2(CO)11: N. A. Richardson, Y. Xie, R. B. King, H. F. Schaefer, J. Phys. Chem. 2001, 105, 11134.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXot1yksrs%3D&md5=05237abc80b3693aac6ff2687aab6917CAS |

[3]  Cr2(CO)10: S. Li, N. A. Richardson, Y. Xie, R. B. King, H. F. Schaefer, Faraday Discuss. 2003, 124, 315.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtFertrk%3D&md5=ac226cf3c0627623a5db9ed908112551CAS | 14527223PubMed |

[4]  Cr2(CO)9: S. Li, N. A. Richardson, R. B. King, H. F. Schaefer, J. Phys. Chem. 2003, 107, 10118.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosVCqu7Y%3D&md5=ca0d9bc12667f8950d383155cb6a22ffCAS |

[5]  Cr2(CO)8: S. Li, R. B. King, H. F. Schaefer, J. Phys. Chem. 2004, 108, 6879.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvVSgsrs%3D&md5=574e85161139c09b045b34fc99b60c7aCAS |

[6]  B. Chiswell, L. M. Venanzi, J. Chem. Soc. A 1966, 417.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF28Xot1SjsQ%3D%3D&md5=6ed4c6ef84de4f2a3699af3de6bb6902CAS |

[7]  W. Clegg, S. Morton, Acta Crystallogr. B 1978, 34, 1707.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  L. Dahl, C.-H. Wei, Acta Crystallogr. 1963, 16, 611.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXksF2js7o%3D&md5=c20311c90777d254c0754f0465ff8b61CAS |

[9]  J. A. Davies, M. El-Ghanam, A. A. Pinkerton, Acta Crystallogr. C 1991, 47, 1356.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  T. Ziegler, J. Autschbach, Chem. Rev. 2005, 105, 2695.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtl2ns7o%3D&md5=ec4fff4082ec9087de1e8052f6a8b44cCAS | 15941226PubMed |

[11]  M. Bühl, H. Kabrede, J. Chem. Theory Comput. 2006, 2, 1282.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  M. Brynda, L. Gagliardi, P. O. Widmark, P. P. Power, B. O. Roos, Angew. Chem. Int. Ed. 2006, 45, 3804.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvFClsL8%3D&md5=65a405e36fb3babc987307d5e8655ae9CAS |

[13]  N. Sieffert, M. Bühl, J. Am. Chem. Soc. 2010, 132, 8056.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmt12rsbc%3D&md5=c1b0c2915812ae8346f131b96bbd3fb2CAS | 20481632PubMed |

[14]  P. Schyman, W. Lai, H. Chen, Y. Wang, S. Shaik, J. Am. Chem. Soc. 2011, 133, 7977.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsVyhur0%3D&md5=3148cbcfb760d694aef5af5601d3514cCAS | 21539368PubMed |

[15]  R. D. Adams, W. C. Pearl, Y. O. Wong, Q. Zhang, M. B. Hall, J. R. Walensky, J. Am. Chem. Soc. 2011, 133, 12994.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsF2ju7c%3D&md5=e3980f50f1531cf23571c68c4409210aCAS | 21786819PubMed |

[16]  R. Lonsdale, J. Olah, A. J. Mulholland, J. N. Harvey, J. Am. Chem. Soc. 2011, 133, 15464.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFGqu77M&md5=26ddc98f4c7f75a96332bc0dcefeef44CAS | 21863858PubMed |

[17]  A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisVWgtrw%3D&md5=bd225cbbb5eb5750cbd4a95028b56b80CAS |

[18]  C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktFWrtbw%3D&md5=b184c28582a539788de66bd09b952e08CAS |

[19]  A. D. Becke, Phys. Rev. A 1988, 38, 3098.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmtlOhsLo%3D&md5=89a4d6eea189a0acadf44cab2961b4a3CAS | 9900728PubMed |

[20]  J. P. Perdew, Phys. Rev. B 1986, 33, 8822.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  F. Furche, J. P. Perdew, J. Chem. Phys. 2006, 124, 044103.
         | Crossref | GoogleScholarGoogle Scholar | 16460145PubMed |

[22]  H. Wang, Y. Xie, R. B. King, H. F. Schaefer, J. Am. Chem. Soc. 2005, 127, 11646.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmslemtb0%3D&md5=5aae6571db86eae5461fb80027ca5493CAS | 16104740PubMed |

[23]  H. Wang, Y. Xie, R. B. King, H. F. Schaefer, J. Am. Chem. Soc. 2006, 128, 11376.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnvFOqsr4%3D&md5=f9bbb122f30e9f9ca2f6037f0a418430CAS | 16939260PubMed |

[24]  T. H. Dunning, J. Chem. Phys. 1970, 53, 2823.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXltVaisbY%3D&md5=e80b3ba83d135470740e0df086e8e095CAS |

[25]  S. Huzinaga, J. Chem. Phys. 1965, 42, 1293.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  A. J. H. Wachters, J. Chem. Phys. 1970, 52, 1033.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXotlSrtQ%3D%3D&md5=9a94418800b35fd914ef09bdee83ad16CAS |

[27]  D. M. Hood, R. M. Pitzer, H. F. Schaefer, J. Chem. Phys. 1979, 71, 705.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXltFakur4%3D&md5=e23ceec5c95534acff2ae7050eaed234CAS |

[28]     (a) M. J. Frisch, et al., GAUSSIAN 03 (Revision E 01 and C 02) 2004 (Gaussian, Inc.: Wallingford, CT).
         (b) M. J. Frisch, et al., GAUSSIAN 09 (Revision B.01) 2010 (Gaussian, Inc.: Wallingford, CT) (see Supplementary Material for details).

[29]  B. N. Papas, H. F. Schaefer, J. Mol. Struct. 2006, 768, 175.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xps1Wnt70%3D&md5=3ade5ecb3792de43a427f6fd8499441fCAS |

[30]  S. J. LaPlaca, J. A. Ibers, W. C. Hamilton, J. Am. Chem. Soc. 1964, 86, 2288.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXkt1ait70%3D&md5=d256182c849ff806f0b030d7a7c62182CAS |

[31]  S. J. La Placa, W. C. Hamilton, J. A. Ibers, Inorg. Chem. 1964, 3, 1491.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXkvVylu7s%3D&md5=6ad7e02107be48a350d88c84224f656aCAS |

[32]  X. M. Liu, C. Y. Wang, Q. S. Li, Y. Xie, R. B. King, H. F. Schaefer, Dalton Trans. 2009, 3774.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsFWhtLw%3D&md5=fe1bcee855f1c0b94ab84e4976b2fea1CAS | 19417943PubMed |

[33]  L. F. Dahl, R. E. Rundle, Acta Crystallogr. 1963, 16, 419.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXktFyrsb0%3D&md5=f28bb6e8dd8b014f9c760a9fa67ed549CAS |

[34]  M. Martin, B. Rees, A. Mitschler, Acta Crystallogr. B 1982, 38, 6.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  V. Jonas, W. Thiel, J. Chem. Phys. 1995, 102, 8474.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlvFegtL0%3D&md5=088b5cd3be60e63fdd82c9a85a00a39bCAS |

[36]  I. Silaghi-Dumitrescu, T. E. Bitterwolf, R. B. King, J. Am. Chem. Soc. 2006, 128, 5342.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtVygtbg%3D&md5=2a158e2d6ffc0edae6011274b26564b2CAS | 16620096PubMed |

[37]  A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 1988, 88, 899.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmtlOitbw%3D&md5=52299b0d9e8f1e932b8760cc4ffafdffCAS |

[38]  P. K. Pearson, G. L. Blackman, H. F. Schaefer, B. Roos, U. Wahlgren, Astrophys. J. 1973, 184, L19.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXkvF2jt7k%3D&md5=25f263d998476f38c078f4aa3eac10c3CAS |

[39]  Y. Zhao, D. G. Truhlar, J. Chem. Phys. 2006, 125, 194101.
         | Crossref | GoogleScholarGoogle Scholar | 17129083PubMed |

[40]  Y. Zhao, D. G. Truhlar, Acc. Chem. Res. 2008, 41, 157.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksV2iug%3D%3D&md5=29db5dc0f646fd694351ff1dd7949bc8CAS | 18186612PubMed |

[41]  T. H. Dunning, J. Chem. Phys. 1989, 90, 1007.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXksVGmtrk%3D&md5=5b651c951fff4ed0182934ad121de2f0CAS |

[42]  D. E. Woon, T. H. Dunning, J. Chem. Phys. 1993, 98, 1358.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhtlans7Y%3D&md5=d19c5942e7fd943a4408bd91f427fa93CAS |

[43]  E. W. Abel, G. Wilkinson, J. Chem. Soc. 1959, 1501.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG1MXovVakug%3D%3D&md5=f4d060b3e42b2a0325817eef518a36aeCAS |