Pyridyl- and Pyridylperoxy Radicals – A Matrix Isolation Study
André Korte A , Artur Mardyukov A and Wolfram Sander A BA Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, D-44781 Bochum, Germany.
B Corresponding author. Email: wolfram.sander@rub.de
Australian Journal of Chemistry 67(9) 1324-1329 https://doi.org/10.1071/CH14149
Submitted: 14 March 2014 Accepted: 7 May 2014 Published: 19 June 2014
Abstract
The three isomeric pyridyl radicals 2a–c were synthesised using flash vacuum pyrolysis in combination with matrix isolation and characterised by infrared spectroscopy. The IR spectra are in good agreement with spectra calculated using density functional theory methods. The reaction of the pyridyl radicals 2 with molecular oxygen leads to the formation of the corresponding pyridylperoxy radicals 3a–c. The peroxy radicals 3 are photolabile, and irradiation results in syn–anti isomerisation of 3a and 3b and ring expansion of all three isomers of 3.
References
[1] J. C. Mackie, M. B. Colket, P. F. Nelson, J. Phys. Chem. 1990, 94, 4099.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXitFKjs7s%3D&md5=99a1d5d0e7fddd683b9d0d883daf9f61CAS |
[2] J. H. Kiefer, Q. Zhang, R. D. Kern, J. Yao, B. Jursic, J. Phys. Chem. A 1997, 101, 7061.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlsFKisLY%3D&md5=64c6417b008ebab4684b79f10b2a7d9aCAS |
[3] N. R. Hore, D. K. Russell, J. Chem. Soc., Perkin Trans. 2 1998, 2, 269.
| Crossref | GoogleScholarGoogle Scholar |
[4] X. L. Cheng, Y. Y. Zhao, Z. Y. Zhou, J. Mol. Struct. THEOCHEM 2004, 678, 17.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkt1CltLo%3D&md5=85785a56b8af4cc0d269cb5ddd5d38a3CAS |
[5] X. L. Cheng, J. Mol. Struct. THEOCHEM 2005, 731, 89.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVynt77I&md5=b0019204f6152c62a2a4b0166f6285fcCAS |
[6] X. Cheng, L. Niu, Y. Zhao, Z. Zhou, Spectrochim. Acta A 2004, 60, 907.
| Crossref | GoogleScholarGoogle Scholar |
[7] R. F. Liu, T. T. S. Huang, J. Tittle, D. H. Xia, J. Phys. Chem. A 2000, 104, 8368.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlslWktrk%3D&md5=b0f5ea003f451bea6acf29a34002d295CAS |
[8] S. W. Wren, K. M. Vogelhuber, J. M. Garver, S. Kato, L. Sheps, V. M. Bierbaum, W. C. Lineberger, J. Am. Chem. Soc. 2012, 134, 6584.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvFOnu78%3D&md5=67239bb7d08f82612b9d20c6e9b45657CAS | 22468558PubMed |
[9] M. Winkler, W. Sander, Aust. J. Chem. 2010, 63, 1013.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosl2hs7c%3D&md5=72ce557dd56aba44956c69c6fa658c3eCAS |
[10] H. H. Nam, G. E. Leroi, J. Am. Chem. Soc. 1988, 110, 4096.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXksFCiurk%3D&md5=1f657108156b4fe9c60792a85421878aCAS |
[11] M. Winkler, B. Cakir, W. Sander, J. Am. Chem. Soc. 2004, 126, 6135.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsVSlsr8%3D&md5=74c59b434906043371a97fa9885ad8d2CAS | 15137779PubMed |
[12] S. L. Debbert, C. J. Cramer, Int. J. Mass Spectrom. 2000, 201, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXltVyrsLg%3D&md5=0552f6ef7ecbd96a7b19f1876ac538dcCAS |
[13] P. E. Williams, B. J. Jankiewicz, L. Yang, H. I. Kenttämaa, Chem. Rev. 2013, 113, 6949.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlGntbjN&md5=aa5118cadac521b49334603caffe630cCAS | 23987564PubMed |
[14] C. J. Cramer, J. Am. Chem. Soc. 1998, 120, 6261.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktFWjtbk%3D&md5=e4fe573265940e0eebabb4cc92cdf78bCAS |
[15] C. J. Cramer, S. Debbert, Chem. Phys. Lett. 1998, 287, 320.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitlagsrY%3D&md5=b1ea0c27a916a66c766b35972d4d4fb9CAS |
[16] P. H. Kasai, D. McLeod, J. Am. Chem. Soc. 1972, 94, 720.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XosFShsg%3D%3D&md5=bb26a0481dd4dafaa1493ebbf84652cbCAS |
[17] J. E. Bennett, J. A. Howard, J. Am. Chem. Soc. 1973, 95, 4008.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXksVWlt70%3D&md5=70bf6f0eef78bb447bac8ab2638f2440CAS |
[18] M. J. Fadden, C. M. Hadad, J. Phys. Chem. A 2000, 104, 6088.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjs1OgsL0%3D&md5=499c785823ca4f7bea8d656c18972276CAS |
[19] Z. B. Alfassi, G. I. Khaikin, P. Neta, J. Phys. Chem. 1995, 99, 4544.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXksVymurw%3D&md5=b9f6475b00486f90a072ec53e0afd692CAS |
[20] Z. Tian, Y. Li, T. Zhang, A. Zhu, F. Qi, J. Phys. Chem. A 2008, 112, 13549.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtl2jsbzM&md5=2c9094bcc21810c34abdf222cba147c0CAS | 19053546PubMed |
[21] A. Mardyukov, W. Sander, Chem. – Eur. J. 2009, 15, 1462.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhslCqsbk%3D&md5=f78e2bce71c04534600d420e09acf4aaCAS | 19132699PubMed |
[22] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09 2009 (Gaussian, Inc.: Wallingford, CT).
[23] A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisVWgtrw%3D&md5=bd225cbbb5eb5750cbd4a95028b56b80CAS |
[24] S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXlvFagt74%3D&md5=1ead0a7fb0f31dc7b2b1199ba311f3b0CAS |
[25] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktFWrtbw%3D&md5=b184c28582a539788de66bd09b952e08CAS |
[26] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmvVSitbY%3D&md5=5b6aaebe0235eedcc65b0c15054348b5CAS |
[27] R. A. Kendall, J. T. H. Dunning, R. J. Harrison, J. Chem. Phys. 1992, 96, 6796.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XktFClurw%3D&md5=207cd0b34ed692e0e33cb6c421ca84fbCAS |
[28] E. V. Brown, G. R. Granneman, J. Am. Chem. Soc. 1975, 97, 621.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXpslCntw%3D%3D&md5=b987d9e990499d700e53226980a15a93CAS |