Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Pyridyl- and Pyridylperoxy Radicals – A Matrix Isolation Study

André Korte A , Artur Mardyukov A and Wolfram Sander A B
+ Author Affiliations
- Author Affiliations

A Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, D-44781 Bochum, Germany.

B Corresponding author. Email: wolfram.sander@rub.de

Australian Journal of Chemistry 67(9) 1324-1329 https://doi.org/10.1071/CH14149
Submitted: 14 March 2014  Accepted: 7 May 2014   Published: 19 June 2014

Abstract

The three isomeric pyridyl radicals 2ac were synthesised using flash vacuum pyrolysis in combination with matrix isolation and characterised by infrared spectroscopy. The IR spectra are in good agreement with spectra calculated using density functional theory methods. The reaction of the pyridyl radicals 2 with molecular oxygen leads to the formation of the corresponding pyridylperoxy radicals 3ac. The peroxy radicals 3 are photolabile, and irradiation results in synanti isomerisation of 3a and 3b and ring expansion of all three isomers of 3.


References

[1]  J. C. Mackie, M. B. Colket, P. F. Nelson, J. Phys. Chem. 1990, 94, 4099.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXitFKjs7s%3D&md5=99a1d5d0e7fddd683b9d0d883daf9f61CAS |

[2]  J. H. Kiefer, Q. Zhang, R. D. Kern, J. Yao, B. Jursic, J. Phys. Chem. A 1997, 101, 7061.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlsFKisLY%3D&md5=64c6417b008ebab4684b79f10b2a7d9aCAS |

[3]  N. R. Hore, D. K. Russell, J. Chem. Soc., Perkin Trans. 2 1998, 2, 269.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  X. L. Cheng, Y. Y. Zhao, Z. Y. Zhou, J. Mol. Struct. THEOCHEM 2004, 678, 17.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkt1CltLo%3D&md5=85785a56b8af4cc0d269cb5ddd5d38a3CAS |

[5]  X. L. Cheng, J. Mol. Struct. THEOCHEM 2005, 731, 89.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVynt77I&md5=b0019204f6152c62a2a4b0166f6285fcCAS |

[6]  X. Cheng, L. Niu, Y. Zhao, Z. Zhou, Spectrochim. Acta A 2004, 60, 907.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  R. F. Liu, T. T. S. Huang, J. Tittle, D. H. Xia, J. Phys. Chem. A 2000, 104, 8368.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlslWktrk%3D&md5=b0f5ea003f451bea6acf29a34002d295CAS |

[8]  S. W. Wren, K. M. Vogelhuber, J. M. Garver, S. Kato, L. Sheps, V. M. Bierbaum, W. C. Lineberger, J. Am. Chem. Soc. 2012, 134, 6584.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvFOnu78%3D&md5=67239bb7d08f82612b9d20c6e9b45657CAS | 22468558PubMed |

[9]  M. Winkler, W. Sander, Aust. J. Chem. 2010, 63, 1013.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosl2hs7c%3D&md5=72ce557dd56aba44956c69c6fa658c3eCAS |

[10]  H. H. Nam, G. E. Leroi, J. Am. Chem. Soc. 1988, 110, 4096.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXksFCiurk%3D&md5=1f657108156b4fe9c60792a85421878aCAS |

[11]  M. Winkler, B. Cakir, W. Sander, J. Am. Chem. Soc. 2004, 126, 6135.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsVSlsr8%3D&md5=74c59b434906043371a97fa9885ad8d2CAS | 15137779PubMed |

[12]  S. L. Debbert, C. J. Cramer, Int. J. Mass Spectrom. 2000, 201, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXltVyrsLg%3D&md5=0552f6ef7ecbd96a7b19f1876ac538dcCAS |

[13]  P. E. Williams, B. J. Jankiewicz, L. Yang, H. I. Kenttämaa, Chem. Rev. 2013, 113, 6949.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlGntbjN&md5=aa5118cadac521b49334603caffe630cCAS | 23987564PubMed |

[14]  C. J. Cramer, J. Am. Chem. Soc. 1998, 120, 6261.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktFWjtbk%3D&md5=e4fe573265940e0eebabb4cc92cdf78bCAS |

[15]  C. J. Cramer, S. Debbert, Chem. Phys. Lett. 1998, 287, 320.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitlagsrY%3D&md5=b1ea0c27a916a66c766b35972d4d4fb9CAS |

[16]  P. H. Kasai, D. McLeod, J. Am. Chem. Soc. 1972, 94, 720.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XosFShsg%3D%3D&md5=bb26a0481dd4dafaa1493ebbf84652cbCAS |

[17]  J. E. Bennett, J. A. Howard, J. Am. Chem. Soc. 1973, 95, 4008.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXksVWlt70%3D&md5=70bf6f0eef78bb447bac8ab2638f2440CAS |

[18]  M. J. Fadden, C. M. Hadad, J. Phys. Chem. A 2000, 104, 6088.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjs1OgsL0%3D&md5=499c785823ca4f7bea8d656c18972276CAS |

[19]  Z. B. Alfassi, G. I. Khaikin, P. Neta, J. Phys. Chem. 1995, 99, 4544.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXksVymurw%3D&md5=b9f6475b00486f90a072ec53e0afd692CAS |

[20]  Z. Tian, Y. Li, T. Zhang, A. Zhu, F. Qi, J. Phys. Chem. A 2008, 112, 13549.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtl2jsbzM&md5=2c9094bcc21810c34abdf222cba147c0CAS | 19053546PubMed |

[21]  A. Mardyukov, W. Sander, Chem. – Eur. J. 2009, 15, 1462.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhslCqsbk%3D&md5=f78e2bce71c04534600d420e09acf4aaCAS | 19132699PubMed |

[22]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09 2009 (Gaussian, Inc.: Wallingford, CT).

[23]  A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisVWgtrw%3D&md5=bd225cbbb5eb5750cbd4a95028b56b80CAS |

[24]  S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXlvFagt74%3D&md5=1ead0a7fb0f31dc7b2b1199ba311f3b0CAS |

[25]  C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktFWrtbw%3D&md5=b184c28582a539788de66bd09b952e08CAS |

[26]  P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmvVSitbY%3D&md5=5b6aaebe0235eedcc65b0c15054348b5CAS |

[27]  R. A. Kendall, J. T. H. Dunning, R. J. Harrison, J. Chem. Phys. 1992, 96, 6796.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XktFClurw%3D&md5=207cd0b34ed692e0e33cb6c421ca84fbCAS |

[28]  E. V. Brown, G. R. Granneman, J. Am. Chem. Soc. 1975, 97, 621.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXpslCntw%3D%3D&md5=b987d9e990499d700e53226980a15a93CAS |