Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Microwave-Assisted Synthesis of Ruthenium(ii) Complexes with Trimethylsilylacetylene as Inhibitors against the Migration of Breast Cancer Cells

Zhao Zhang A D , Ya-Jun Wang B D , Qiong Wu A , Xiao-Hui Wu A , Fu-Qiang Sun A , Bao-Guo Wang C , Wen-Jie Mei A E and Si-Dong Chen C E
+ Author Affiliations
- Author Affiliations

A College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China.

B Affiliated Hospital of Guangdong Medical, Zhanjiang, Guangdong 524000, China.

C Key Laboratory of Molecular Epidemiology, Guangdong Pharmaceutical University, Guangzhou, 510310, China.

D These authors contributed equally to this work.

E Corresponding authors. Email: wenjiemei@126.com; chensidong@tom.com

Australian Journal of Chemistry 68(1) 137-144 https://doi.org/10.1071/CH14192
Submitted: 10 February 2014  Accepted: 23 April 2014   Published: 24 June 2014

Abstract

In the present study, two novel chiral ruthenium(ii) complexes with trimethylsilylacetylene (TMSA), Λ- and Δ-[Ru(bpy)2(p-TEPIP)](ClO4)2 (bpy = 2,2-bipyridine; p-TEPIP = 5-(2-(p-trimethylsilyl propargyl)-1H-imidazo[4,5-f][1,10] phenanthroline) (Λ-1 and Δ-1) were prepared using Sonogashira coupling reaction under microwave irradiation. We found that both Λ-1 and Δ-1 could inhibit the growth of highly metastatic human breast cancer cells (MDA-MB-231) with half-maximal inhibitory concentration (IC50) of 32.1 and 36.9 µM, respectively. Wound healing assay demonstrated that both isomers inhibited the migration of MDA-MB-231 cells. Both Λ-1 and Δ-1 compounds were found throughout the cell and were particularly enriched in the nucleus. Furthermore, we observed fragmentation of the nucleus leading to apoptosis. To conclude, it is clear that this type of chiral ruthenium(ii) complex with TMSA can induce apoptosis and thus inhibit the growth and migration of tumour cells.


References

[1]  H. Song, J. T. Kaiser, J. K. Barton, Nat. Chem. 2012, 4, 615.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotlCks7c%3D&md5=38e4e6d9abc7087632c0d113585f36dcCAS | 22824892PubMed |

[2]  C. Hiort, C. Hiort, C. Hiort, J. Am. Chem. Soc. 1993, 115, 3448.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXksVCntLs%3D&md5=d9fc528ed375f2beeae40e4e8b5f74ddCAS |

[3]  H. Niyazi, J. P. Hall, K. O’Sullivan, G. Winter, T. Sorensen, G. M. Kelly, C. J. Cardin, Nat. Chem. 2012, 4, 621.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovFyrt7c%3D&md5=aed69037cde4adda5bd68bcde34409a0CAS | 22824893PubMed |

[4]  P. Y. Zhang, J. Q. Wang, H. Y. Huang, L. P. Qiao, L. N. Ji, H. Chao, Dalton Trans. 2013, 42, 8907.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXot1emtrY%3D&md5=34e52f66fedddd4975474d4a7fd3fb2eCAS |

[5]  W. J. Mei, J. Liu, K. Zheng, L. Lin, H. Chao, A. Li, F. Yun, L. N. Ji, Dalton Trans. 2003, 7, 1352.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  D. M. D’Alessandro, F. R. Keene, P. J. Steel, C. J. Sumby, Aust. J. Chem. 2003, 56, 657.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvFSis7Y%3D&md5=f394363d8e61a491e9db3e0e444a9de7CAS |

[7]  M. J. Pisani, D. K. Weber, K. Heimann, J. G. Collins, F. R. Keene, Metallomics 2010, 2, 393.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovVGksL8%3D&md5=66e7dc873589c1a353a189f0c064a8f7CAS | 21072384PubMed |

[8]  M. J. Pisani, P. D. Fromm, Y. Mulyana, R. J. Clarke, H. Körner, K. Heimann, J. G. Collins, F. R. Keene, ChemMedChem 2011, 6, 848.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvFGisb4%3D&md5=03b2d9c4b68a70374151fb1a8aeea427CAS | 21472992PubMed |

[9]  L. M. Wilhelmsson, F. Westerlund, P. Lincoln, B. Nordén, J. Am. Chem. Soc. 2002, 124, 12092.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XntFSisL4%3D&md5=de33ecd41617e17b4797ce928536f045CAS | 12371838PubMed |

[10]  V. Pierroz, T. Joshi, A. Leonidova, C. Mari, J. Schur, I. Ott, L. Spiccia, S. Ferrari, G. Gasser, J. Am. Chem. Soc. 2012, 134, 20376.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslCgsLjJ&md5=f63b11d38d104b549984bf0e3b75a26dCAS | 23181418PubMed |

[11]  C. Qian, J. Q. Wang, C. L. Song, L. L. Wang, L. N. Ji, H. Chao, Metallomics 2013, 5, 844.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVeiur3P&md5=8e7bfa8c74890975f77217be5c2469eeCAS | 23483103PubMed |

[12]  T. F. Chen, W. J. Mei, Y. S. Wong, J. Liu, Y. J. Liu, H. S. Xie, W. J. Zheng, Med. Chem. Commun. 2010, 1, 73.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVeju7vJ&md5=299ddb66cf1f23543da52a04acf5caedCAS |

[13]  X. H. Tian, M. R. Gill, I. Cantón, J. A. Thomas, G. Battaglia, ChemBioChem 2011, 12, 548.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVems7g%3D&md5=c8183b897cdef0c52c86211274f67bf1CAS |

[14]  M. R. Gill, J. A. Thomas, Chem. Soc. Rev. 2012, 41, 3179.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksVOhtbY%3D&md5=986536afbf3915055e585e824e8becd1CAS | 22314926PubMed |

[15]  M. R. Gill, J. Garcia-Lara, S. J. Foster, C. Smythe, G. Battaglia, J. A. Thomas, Nat. Chem. 2009, 1, 662.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlSgs7zO&md5=b79058bde6e0651627dc2ec92c9da4d2CAS | 21378959PubMed |

[16]  F. R. Svensson, M. Abrahamsson, N. Strömberg, A. G. Ewing, P. Lincoln, J. Phys. Chem. Lett. 2011, 2, 397.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1aitL4%3D&md5=d219755a3cfec7ed4aa36afc43643a28CAS | 21461029PubMed |

[17]  P. A. Gale, N. Busschaert, C. J. E. Haynes, L. E. Karagiannidis, I. L. Kirby, Chem. Soc. Rev. 2014, 43, 205.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVGktLzJ&md5=dfde01b17eb17d2a5815a1395501be0eCAS | 24108306PubMed |

[18]  V. K. Lo, Y. Liu, M. K. Wong, C. M. Che, Org. Lett. 2006, 8, 1529.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xitl2hsr4%3D&md5=03e6d62b667f9b6ebf5add5a908b6acdCAS | 16597102PubMed |

[19]  J. Q. Wan, Y. Xia, Y. Liu, M. H. Wang, P. Rocchi, J. H. Yao, F. Q. Qu, J. Neyts, J. L. Iovanna, L. Peng, J. Med. Chem. 2009, 52, 1144.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Ogsbs%3D&md5=5da0583c317ebea3e4465b43ad8334b5CAS |

[20]  E. Ranyuk, N. Cauchon, K. Klarskov, B. Gueé́rin, J. E. Lier, J. Med. Chem. 2013, 56, 1520.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFaqtb8%3D&md5=47172941e847202f3b5b19b7f8a38e4cCAS | 23356907PubMed |

[21]  E. Vergara, E. Cerrada, A. Casini, O. Zava, M. Laguna, P. J. Dyson, Organometallics 2010, 29, 2596.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvVaktL0%3D&md5=127e9a7173d6cae8f17a74ef76f19567CAS |

[22]  R. G. Balasingham, C. F. Williams, H. J. Mottram, M. P. Coogan, S. J. A. Pop, Organometallics 2012, 31, 5835.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFequ7nO&md5=35588f8a66c25e814f351282ecf5e7eeCAS |

[23]  Q. Wu, T. F. Chen, Z. Zhang, S. Y. Liao, X. H. Wu, J. Wu, W. J. Mei, Y. H. Chen, W. L. Wu, L. L. Zeng, W. J. Zheng, Dalton Trans. 2014, 43, 9216.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXovVamsbw%3D&md5=8fbf1947f4837ba2b891df1fad72bbfeCAS | 24818221PubMed |

[24]  Y. X. Yuan, Y. C. Wang, L. Jiang, F. Gao, S. M. Liang, C. Y. Su, H. Chao, L. N. Ji, Aust. J. Chem. 2008, 61, 732.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVOiurfK&md5=dc57626bc151aa78f948b923074b8124CAS |

[25]  F. Li, Y. Mulyana, M. Feterl, J. M. Warner, J. G. Collins, F. R. Keene, Dalton Trans. 2011, 40, 5032.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvFahtbk%3D&md5=0c4cb285e941db99f08c5e7d9b2694a9CAS | 21442118PubMed |

[26]  I. Haq, P. Lincoln, D. Suh, B. Nordén, B. Z. Chowdhry, J. B. Chaires, J. Am. Chem. Soc. 1995, 117, 4788.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlt1SrtLo%3D&md5=b606cce22625846e043ef50ee30049f3CAS |

[27]  A. M. Lord, M. F. Mahon, M. D. Lloyd, M. D. Threadgill, J. Med. Chem. 2009, 52, 868.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps1Sq&md5=44766d7bc0224ec1943fd289ee770657CAS | 19117416PubMed |

[28]  E. Ranyuk, N. Cauchon, K. Klarskov, B. Guérin, J. E. V. Lier, J. Med. Chem. 2013, 56, 1520.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFaqtb8%3D&md5=47172941e847202f3b5b19b7f8a38e4cCAS | 23356907PubMed |

[29]  N. Cauchon, H. J. Tian, R. Langlois, C. L. Madeleine, S. Martin, H. Ali, D. Hunting, J. E. Lier, Bioconjugate Chem. 2005, 16, 80.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFChsr3I&md5=4f8056995c6f6cd16ab8a77cb5bd6089CAS |

[30]  R. Lincoln, L. Kohler, S. Monro, H. Yin, M. Stephenson, R. Zong, A. Chouai, C. Dorsey, R. Hennigar, R. P. Thummel, S. A. McFarland, J. Am. Chem. Soc. 2013, 135, 17161.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1ejtL7K&md5=ac0414701910744b2c90754edf1370a9CAS | 24127659PubMed |

[31]  Q. Wu, J. Wu, W. J. Mei, Q. Wang, Z. Zhang, X. H. Wu, F. Y. Sun, W. L. Wu, Y. H. Chen, X. Y. Hu, Y. Y. Tao, Aust. J. Chem. 2013, 66, 1422.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslKkurvF&md5=3bb4ea6a79e9e53831a80859771a7401CAS |

[32]  J. K. Barton, Science 1986, 233, 727.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XlsVyqur0%3D&md5=8aaff14519ca41c515bbd28ed11a2d48CAS | 3016894PubMed |

[33]  M. Eriksson, M. Leijon, C. Hiort, B. Nordén, A. Gräslund, J. Am. Chem. Soc. 1992, 114, 4933.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xks1Cqur4%3D&md5=c854f15cc596ccd2d3c959d188136e12CAS |

[34]  U. Schatzschneider, J. Niesel, I. Ott, R. Gust, H. Alborzinia, S. Wölfl, ChemMedChem 2008, 3, 1104.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXovFWgsbY%3D&md5=70de69891d19c59ffe2c64c6916b8758CAS | 18425738PubMed |

[35]  A. C. G. Hotze, M. Bacac, A. H. Velders, B. A. J. Jansen, H. Kooijman, A. L. Spek, J. G. Haasnoot, J. Reedijk, J. Med. Chem. 2003, 46, 1743.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitlGlur0%3D&md5=433929e489a4c0780d40d7b8d42a71ccCAS |

[36]  Q. Wu, C. D. Fan, T. F. Chen, C. R. Liu, W. J. Mei, S. D. Chen, B. G. Wang, Y. Y. Chen, W. J. Zheng, Eur. J. Med. Chem. 2013, 63, 57.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXovFams7s%3D&md5=b17c05976b13e745c5d750f3c104c616CAS | 23455057PubMed |

[37]  M. Magnarin, A. Bergamo, M. E. Carotenuto, S. Zorzet, G. Sava, Anticancer Res. 2000, 20, 2939.
         | 1:CAS:528:DC%2BD3cXnvVequ70%3D&md5=bbaec84dacf0335a08941d9ee8d2d21eCAS | 11062704PubMed |

[38]  B. Qin, K. Cheng, Breast Cancer Res. 2010, 12, R74.
         | Crossref | GoogleScholarGoogle Scholar | 20863366PubMed |

[39]  E. Vergara, E. Cerrada, A. Casini, O. Zava, M. Laguna, P. J. Dyson, Organometallics 2010, 29, 2596.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvVaktL0%3D&md5=127e9a7173d6cae8f17a74ef76f19567CAS |

[40]  C. Johnson-Holiday, R. Singh, E. L. Johnson, W. E. Grizzle, J. W. Lillard, S. Singh, World J. Surg. Oncol. 2011, 9, 46.
         | Crossref | GoogleScholarGoogle Scholar | 21539750PubMed |

[41]  M. Safavi, N. Esmati, S. K. Ardestani, S. Emami, S. Ajdari, J. Davoodi, A. Shafiee, A. Foroumadi, Eur. J. Med. Chem. 2012, 58, 573.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslOrsrrL&md5=765fa71de496008926f0877f7b297e76CAS | 23174316PubMed |

[42]  F. Ari, E. Ulukaya, M. Sarimahmut, V. T. Yilmaz, Bioorg. Med. Chem. 2013, 21, 3016.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmtVamtbs%3D&md5=ec479e634bec774d247180db6c9d9d2bCAS | 23601820PubMed |