Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Functionalisation of Imidazolin-2-imine to Corresponding Phosphinamine, Chalcogenide (O, S, Se, Te), and Borane Compounds

Kishor Naktode A , Sayak Das Gupta A , Abhinanda Kundu A , Salil K. Jana A , Hari Pada Nayek B , Bhabani S. Mallik A C and Tarun K. Panda A C
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Indian Institute of Technology Hyderabad, Ordnance Factory Estate, Yeddumailaram 502205, Andhra Pradesh, India.

B Department of Applied Chemistry, Indian School of Mines, Dhanbad, 826004, Jharkhand, India.

C Corresponding authors. Email: bhabani@iith.ac.in; tpanda@iith.ac.in

Australian Journal of Chemistry 68(1) 127-136 https://doi.org/10.1071/CH14078
Submitted: 18 February 2014  Accepted: 14 April 2014   Published: 6 June 2014

Abstract

1,3-Di-tert-butyl-imidazolin-2-ylidine-1,1-diphenylphosphinamine (2) was prepared from 1,3-di-tert-butyl-imidazolin-2-imine (1) and chlorodiphenylphosphine. Compound 2 was treated further with elemental sulfur, selenium, and tellurium to afford the corresponding chalcogenide derivatives, 1,3-di-tert-butyl-imidazolin-2-ylidine-P,P-diphenyl-phosphinothioicamide (4), 1,3-di-tert-butyl-imidazolin-2-ylidine-P,P-diphenyl-phosphinoselenoicamide (5), and 1,3-di-tert-butyl-imidazolin-2-ylidine-P,P-diphenyl-phosphinotelluroicamide (6) in good yield. 1,3-Di-tert-butyl-imidazolin-2-ylidine-P,P-diphenylphosphinicamide (3) was obtained by dissolving compound 2 in hydrochloric acid solution in THF. The corresponding borane adduct, 1,3-di-tert-butyl-imidazolin-2-ylidine-P,P-diphenyl-phosphinaminoborane (7) was isolated by the reaction of compound 2 and sodium borohydride in good yield. The molecular structures of compounds 2 and 47 were established by X-ray diffraction analyses. To analyse the electronic structure of chalcogenides of imidazolin-2-imine ligands, the protonation energies of the oxygen, sulfur, and selenide derivative of ligand 2 were calculated by means of density functional theory. Finally, the charge distribution in compounds 3, 4, and 5 were determined using natural bond orbital analysis.


References

[1]  (a) M. Regitz, Angew. Chem. Int. Ed. 1996, 35, 725.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xis1Shurk%3D&md5=cc61f4753115f2fd93c8492096a73bd5CAS |
      (b) W. A. Herrmann, C. Köcher, Angew. Chem. Int. Ed. 1997, 36, 2162.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) A. J. Arduengo, R. Krafczyk, Chem. Unserer Zeit 1998, 32, 6.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) A. J. Arduengo, Acc. Chem. Res. 1999, 32, 913.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) D. Bourissou, O. Guerret, F. P. Gabbai, G. Bertrand, Chem. Rev. 2000, 100, 39.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) C. Wentrup, Science 2001, 292, 1846.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) V. Nair, S. Bindu, V. Sreekumar, Angew. Chem. Int. Ed. 2004, 43, 5130.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) F. E. Hahn, Angew. Chem. Int. Ed. 2006, 45, 1348.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) V. Ritleng, C. Barth, E. Brenner, S. Milosevic, M. J. Chetcuti, Organometallics 2008, 27, 4223.
         | Crossref | GoogleScholarGoogle Scholar |
      (j) J. A. Cabeza, I. del Rio, J. M. Fernandez-Colinas, E. Perez-Carreno, M. G. Sanchez-Vega, D. Vazquez-Garcia, Organometallics 2010, 29, 3828.
         | Crossref | GoogleScholarGoogle Scholar |
      (k) R. A. Layfield, J. J. W. McDouall, M. Scheer, C. Schwarzmaier, F. Tuna, Chem. Commun. 2011, 47, 10623.
         | Crossref | GoogleScholarGoogle Scholar |
      (l) A. Chartoire, M. Lesieur, L. Falivene, A. M. Z. Slawin, L. Cavallo, C. S. J. Cazin, S. P. Nolan, Chem. – Eur. J. 2012, 18, 4517.
         | Crossref | GoogleScholarGoogle Scholar |
      (m) O. Rivada-Wheelaghan, M. A. Ortuño, J. Díez, A. Lledós, S. Conejero, Angew. Chem. Int. Ed. 2012, 51, 3936.
         | Crossref | GoogleScholarGoogle Scholar |
      (n) A. S. K. Hashmi, I. Braun, P. Nösel, J. Schädlich, M. Wieteck, M. Rudolph, F. Rominger, Angew. Chem. Int. Ed. 2012, 51, 4456.
         | Crossref | GoogleScholarGoogle Scholar |
      (o) E. Merino, E. Poli, U. Díaz, D. Brune, Dalton Trans. 2012, 41, 10913.
         | Crossref | GoogleScholarGoogle Scholar |
      (p) C. Y. Tang, N. Phillips, J. I. Bates, A. L. Thompson, M. J. Gutmann, S. Aldridge, Chem. Commun. 2012, 48, 8096.
         | Crossref | GoogleScholarGoogle Scholar |
      (q) K. Matsubara, T. Sueyasu, M. Esaki, A. Kumamoto, S. Nagao, H. Yamamoto, Y. Koga, S. Kawata, T. Matsumoto, Eur. J. Inorg. Chem. 2012, 2012, 3079.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) L. Jafarpour, S. P. Nolan, Adv. Organomet. Chem. 2000, 46, 181.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXos1yhtrg%3D&md5=458f2abf3bc70a7987f302994b70697cCAS |
      (b) T. Weskamp, V. P. W. Böhm, W. A. Herrmann, J. Organomet. Chem. 2000, 600, 12.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) W. A. Herrmann, T. Weskamp, V. P. W. Böhm, Adv. Organomet. Chem. 2001, 48, 1.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) L. Jafarpour, S. P. Nolan, J. Organomet. Chem. 2001, 617–618, 17.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) D. Enders, H. Gielen, J. Organomet. Chem. 2001, 617–618, 70.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) W. A. Herrmann, Angew. Chem. Int. Ed. 2002, 41, 1290.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) A. C. Hillier, G. A. Grasa, M. S. Viciu, H. M. Lee, C. Yang, S. P. Nolan, J. Organomet. Chem. 2002, 653, 69.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) D. Enders, T. Balensiefer, Acc. Chem. Res. 2004, 37, 534.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) V. César, S. Bellemin-Laponnaz, L. H. Gade, Chem. Soc. Rev. 2004, 33, 619.
         | Crossref | GoogleScholarGoogle Scholar |
      (j) E. Peris, R. H. Crabtree, Coord. Chem. Rev. 2004, 248, 2239.
         | Crossref | GoogleScholarGoogle Scholar |
      (k) V. Nair, R. S. Menon, V. Sreekumar, Pure Appl. Chem. 2005, 77, 1191.
         | Crossref | GoogleScholarGoogle Scholar |
      (l) C. Y. Tang, A. L. Thompson, S. Aldridge, J. Am. Chem. Soc. 2010, 132, 10578.
         | Crossref | GoogleScholarGoogle Scholar |
      (m) T. P. Brewster, J. D. Blakemore, N. D. Schley, C. D. Incarvito, N. Hazari, G. W. Brudvig, R. H. Crabtree, Organometallics 2011, 30, 965.
         | Crossref | GoogleScholarGoogle Scholar |
      (n) C.-H. Hsieh, M. Y. Darensbourg, J. Am. Chem. Soc. 2010, 132, 14118.
         | Crossref | GoogleScholarGoogle Scholar |
      (o) V. J. Scott, J. A. Labinger, J. E. Bercaw, Organometallics 2010, 29, 4090.
         | Crossref | GoogleScholarGoogle Scholar |
      (p) L. Zhu, T.-T. Gao, L.-X. Shao, Tetrahedron 2011, 67, 5150.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) A. J. Boydston, K. A. Williams, C. W. Bielawski, J. Am. Chem. Soc. 2005, 127, 12496.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpt1Wisb4%3D&md5=9fe788d865626f958bab9297323d1ef9CAS | 16144390PubMed |
         (b) M. Egen, K. Kahle, M. Bold, T. Gessner, C. Lennartz, S.Nord, H.-W. Schmidt, M. Thelakkat, M. Bäte, C. Neuber, W. Kowalsky, C. Schildknecht, H.-H. Johannes, WO 2006056418 (BASF AG) 2006.
         (c) M. Bold, C. Lennartz, M. Prinz, H.-W. Schmidt, M. Thelakkat, M. Bäte, C. Neuber, W. Kowalsky, C. Schildknecht, H.-H. Johannes, WO 2005019373 (BASF AG) 2005.

[4]  J. C. Garrison, W. C. Youngs, Chem. Rev. 2005, 105, 3978.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFyrtbjJ&md5=468013c77198bdb186d8cf74603605f0CAS | 16277368PubMed |

[5]  N. Kuhn, M. Göhner, G. Frenking, Y. Chen, in Unusual Structures and Physical Properties in Organometallic Chemistry (Eds M. Gielen, R. Willem, B. Wrackmeyer) 2002, pp. 337–386 (John Wiley & Sons: New York, NY).

[6]  N. Kuhn, M. Göhner, M. Grathwohl, J. Wiehoff, G. Frenking, Y. Chen, Z. Anorg. Allg. Chem. 2003, 629, 793.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjslaqsrY%3D&md5=d07f13f451bd88591114ac2fccb1a5c9CAS |

[7]  C. J. Carmalt, A. H. Cowley, Adv. Inorg. Chem. 2000, 50, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXksVKktbk%3D&md5=e3b89ba50725075ac50b03221a7ad399CAS |

[8]  N. Kuhn, A. Al-Sheikh, Coord. Chem. Rev. 2005, 249, 829.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisVWrsrw%3D&md5=953091147a317e2c251716aad30732d3CAS |

[9]  N. Kuhn, K. Kotowski, T. Kratz, G. Henkel, Phosphorus Sulfur 1998, 136, 517.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  (a) X. Wu, M. Tamm, Coord. Chem. Rev. 2014, 260, 116.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFSktr7L&md5=610c6f89ade11c03bddacdb7ce68c8a4CAS |
      (b) M. Tamm, S. Randoll, T. Bannenberg, E. Herdtweck, Chem. Commun. 2004, 876,
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. Tamm, S. Beer, E. Herdtweck, Z. Naturforsch. B: Chem. Sci. 2004, 59, 1497.
      (d) M. Tamm, S. Randoll, E. Herdtweck, N. Kleigrewe, G. Kehr, G. Erker, B. Rieger, Dalton Trans. 2006, 459..
         | Crossref | GoogleScholarGoogle Scholar |
      (e) M. Tamm, D. Petrovic, S. Randoll, S. Beer, T. Bannenberg, P. G. Jones, J. Grunenberg, Org. Biomol. Chem. 2007, 5, 523.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) D. Petrovic, T. Bannenberg, S. Randoll, P. G. Jones, M. Tamm, Dalton Trans. 2007, 2812.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) T. K. Panda, S. Randoll, C. G. Hrib, P. G. Jones, T. Bannenberg, M. Tamm, Chem. Commun. 2007, 5007.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) T. K. Panda, D. Petrovic, T. Bannenberg, C. G. Hrib, P. G. Jones, M. Tamm, Inorg. Chim. Acta 2008, 361, 2236.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) S. Beer, K. Brandhorst, J. Grunenberg, C. G. Hrib, P. G. Jones, M. Tamm, Org. Lett. 2008, 10, 981.
         | Crossref | GoogleScholarGoogle Scholar |
      (j) S. Randoll, P. G. Jones, M. Tamm, Organometallics 2008, 27, 3232.
         | Crossref | GoogleScholarGoogle Scholar |
      (k) S. H. Stelzig, M. Tamm, R. M. Waymouth, J. Polym. Sci. Pol. Chem. 2008, 46, 6064.
         | Crossref | GoogleScholarGoogle Scholar |
      (l) T. K. Panda, C. G. Hrib, P. G. Jones, J. Jenter, P. W. Roesky, M. Tamm, Eur. J. Inorg. Chem. 2008, 2008, 4270.
         | Crossref | GoogleScholarGoogle Scholar |
      (m) T. K. Panda, A. G. Trambitas, T. Bannenberg, C. G. Hrib, S. Randoll, P. G. Jones, M. Tamm, Inorg. Chem. 2009, 48, 5462.
         | Crossref | GoogleScholarGoogle Scholar |
      (n) J. Börner, U. Flörke, T. Glöge, T. Bannenberg, M. Tamm, M. D. Jones, A. Döring, D. Kuckling, S. Herres-Pawlis, J. Mol. Catal. Chem. 2010, 316, 139.
         | Crossref | GoogleScholarGoogle Scholar |
      (o) A. Trambitas, T. Panda, J. Jenter, P. Roesky, C.-G. Daniliuc, C. Hrib, P. G. Jones, M. Tamm, Inorg. Chem. 2010, 49, 2435.
         | Crossref | GoogleScholarGoogle Scholar |
      (p) B. Haberlag, X. Wu, K. Brandhorst, J. Grunenberg, C. G. Daniliuc, P. G. Jones, M. Tamm, Chem. – Eur. J. 2010, 16, 8868.
         | Crossref | GoogleScholarGoogle Scholar |
      (q) T. K. Panda, C. G. Hrib, P. G. Jones, M. Tamm, J. Organomet. Chem. 2010, 695, 2768.
         | Crossref | GoogleScholarGoogle Scholar |
      (r) A. G. Trambitas, T. K. Panda, M. Tamm, Z. Anorg. Allg. Chem. 2010, 636, 2156.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  (a) R. K. Kottalanka, K. Naktode, T. K. Panda, J. Mol. Struct. 2013, 1036, 188.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXivFynt78%3D&md5=402649bd19176805861bc4ed255ad6d2CAS |
      (b) R. K. Kottalanka, K. Naktode, S. Anga, H. P. Nayek, T. K. Panda, Dalton Trans. 2013, 42, 4947.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) R. K. Kottalanka, S. Anga, S. K. Jana, T. K. Panda, J. Organomet. Chem. 2013, 740, 104.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) F. Watari, Inorg. Chem. 1981, 20, 1776.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  M. D. Rudd, M. A. Creighton, J. A. Kautz, Polyhedron 2004, 23, 1923.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltlyrt7o%3D&md5=d2fff1639411235354d7b87b616b205eCAS |

[13]  G. G. Briand, T. Chivers, M. Parvez, G. Schatte, Inorg. Chem. 2003, 42, 525.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xps1ajsr8%3D&md5=b68273086124e04dac03f3bf47ce75e8CAS | 12693235PubMed |

[14]  R. K. Kottalanka, P. Laskar, K. Naktode, B. S. Mallik, T. K. Panda, J. Mol. Struct. 2013, 1047, 302.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVGrs7jF&md5=062d49ae1510a64f5adb9d31aff651e1CAS |

[15]  R. K. Kottalanka, S. Anga, K. Naktode, P. Laskar, H. P. Nayek, T. K. Panda, Organometallics 2013, 32, 4473.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1KhtrjJ&md5=5d47c94cf624a42a014784331f9fae3cCAS |

[16]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision B.01 2010 (Gaussian, Inc.: Wallingford, CT).

[17]  R. Dennington, T. Keith, J. Millam, GaussView, Version 5 2009 (Gaussian, Inc.: Wallingford, CT).

[18]  (a) D. Becke, J. Chem. Phys. 1993, 98, 5648.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisVWgtrw%3D&md5=bd225cbbb5eb5750cbd4a95028b56b80CAS |
      (b) C. Lee, W. Yan, R. G. Parr, Phys. Rev. B 1988, 37, 785.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  J. B. Foresman, T. M. Frisch, Exploring Chemistry with Electronic Structure Methods, 2nd edn 1996 (Gaussian, Inc.: Pittsburgh, PA).

[20]  G. M. Sheldrick, SHELXL-97, Program of Crystal Structure Refinement 1997 (University of Göttingen: Göttingen).

[21]  L. J. Farrugia, J. Appl. Crystallogr. 1999, 32, 837.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlsVSlurk%3D&md5=6ea51a6d337c4eb7b42c7387a614af42CAS |