Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis, Structure, and Visible Phosphorescence Emission of Novel CuI Coordination Polymers Based on 4,4′-Bis(3-pyridyl)-2,2′-bis(hydroxylmethyl) Biphenyl

Guo-Xia Jin A , Jian-Ping Ma A , Chuan-Zhi Sun A and Yu-Bin Dong A B
+ Author Affiliations
- Author Affiliations

A College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Engineering Research Center of Pesticide and Medicine Intermediate Clean Production, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China.

B Corresponding author. Email: yubindong@sdnu.edu.cn

Australian Journal of Chemistry 68(2) 307-314 https://doi.org/10.1071/CH14153
Submitted: 17 March 2014  Accepted: 1 May 2014   Published: 18 August 2014

Abstract

Four new CuI coordination polymers, [(CuCl)L]n (1), {[(CuCl)2L2]·(H2O)}n (2), [(CuBr)L]n (3), and {[(CuBr)2L2]·(H2O)}n (4), were obtained from a new ligand 4,4′-bis(3-pyridyl)-2,2′-bis(hydroxylmethyl) biphenyl (L) and characterized by single-crystal X-ray diffraction. In 1 and 3, the rhombic [Cu2(μ-X)2] units are connected to each other by the bidentate linkers to form an infinite 1D double chain (X = Cl, Br). Such 1D chains are arranged into a 2D sheet through inter-chain π···π interactions. In 2 and 4, there are similar 1D double chains, but different inter-chain arrangement. Such 1D chains are connected into a 2D layer and further arranged in an ABAB fashion through O–H···X hydrogen bonds. The emission spectra and lifetimes in the microsecond range were measured at room temperature and at 77 K. Complexes 1 and 3 exhibit strong orange and yellow–orange emission in the solid state at room temperature, and were assigned to X-and M-to-ligand charge transfer excited states based on density functional theory calculations. The emission property of 2 and 4 was distinctly different from that of 1 and 3, probably due to the difference in coordination environments of the CuI centres as well as the dissimilar intermolecular arrangement.


References

[1]  R. C. Evans, P. Douglas, C. J. Winscom, Coord. Chem. Rev. 2006, 250, 2093.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmslGms7Y%3D&md5=b844f6e266c314f6ff04d54635f5a006CAS |

[2]  P. C. Ford, E. Cariati, J. Bourassa, Chem. Rev. 1999, 99, 3625.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXntFWmu7w%3D&md5=773464209679cc9cb991e750e1a294cbCAS | 11849032PubMed |

[3]  M. Vitale, P. C. Ford, Coord. Chem. Rev. 2001, 219–221, 3.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  D. M. Zink, M. Bachle, T. Baumann, M. Nieger, M. Kuhn, C. Wang, W. Klopper, U. Monkowius, T. Hofbeck, H. Yersin, S. Brase, Inorg. Chem. 2013, 52, 2292.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsV2ru7bE&md5=3ad39ac376899fbcd0dd2d03e84c22bcCAS | 23061380PubMed |

[5]  N. P. Rath, E. M. Holt, K. Tanimura, J. Chem. Soc., Dalton Trans. 1986, 2303.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXnslKjug%3D%3D&md5=7f8cc7085b1a87f237aed427125048eeCAS |

[6]  S. Perruchas, X. F. Le Goff, S. Maron, I. Maurin, F. Guillen, A. Garcia, T. Gacoin, J. P. Boilot, J. Am. Chem. Soc. 2010, 132, 10967.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpsVWlsLY%3D&md5=1e1b357669f472f01ac8e7bfc9eaecd4CAS | 20698644PubMed |

[7]  T. H. Kim, Y. W. Shin, J. H. Jung, J. S. Kim, J. Kim, Angew. Chem. Int. Ed. 2008, 47, 685.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhslamtb4%3D&md5=6b628f3e043f2db386e2c4148c7f5eb4CAS |

[8]  Z. W. Liu, P. I. Djurovich, M. T. Whited, M. E. Thompson, Inorg. Chem. 2012, 51, 230.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFKhu7%2FF&md5=a62dbb0fe4a12c9a62fb6d56ae04f6e0CAS |

[9]  M. Munakata, T. K. Sowa, M. Maekawa, A. Honda, S. Kitagawa, J. Chem. Soc., Dalton Trans. 1994, 277.

[10]  M. Henary, J. L. Wootton, S. I. Khan, J. I. Zink, Inorg. Chem. 1997, 36, 796.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhsVSlur0%3D&md5=520aff9d7a56b28780853920d8e53087CAS |

[11]  H. Araki, K. Tsuge, Y. Sasaki, S. Ishizaka, N. Kitamura, Inorg. Chem. 2005, 44, 9667.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1WisLrP&md5=e907ebeb26394029d801d0ee66316f24CAS | 16363835PubMed |

[12]  C. Kutal, Coord. Chem. Rev. 1990, 99, 213.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXit1Kmsr4%3D&md5=acf0684b1640c30e7679bb79fdfecd22CAS |

[13]  D. Vonlanthen, J. Rotzler, M. Neuburger, M. Mayor, Eur. J. Org. Chem. 2010, 120.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXos1emsA%3D%3D&md5=5c743cc04216af75f1ead9296c65e999CAS |

[14]  SADABS and SAINT 1998 (Bruker Analytical X-ray Systems Inc.: Madison, WI).