Novel Synthesis, Molecular Structure, and Theoretical Studies of Dispiro Compounds via Pseudo-eight-component Reaction
Nourallah Hazeri A C , Mojtaba Lashkari A , Santiago García-Granda B and Laura Torre-Fernández BA Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, PO Box 98135-674 Zahedan, Iran.
B Department of Physical and Analytical Chemistry, University of Oviedo–Centro de Investigación en Nanomateriales y Nanotecnología (CINN), c/ Julián Clavería, 8, 33006 Oviedo, Spain.
C Corresponding author. Email: nhazeri@chem.usb.ac.ir
Australian Journal of Chemistry 67(11) 1656-1665 https://doi.org/10.1071/CH13713
Submitted: 2 January 2014 Accepted: 2 March 2014 Published: 8 May 2014
Abstract
We have developed a diastereoselective synthesis of dispiro compounds through a one-pot domino pseudo-eight-component reaction of amines, aldehydes, and Meldrum’s acid. This method resulted in the generation of complex products with four stereocentres and involves formation of 10 new bonds. Quantum mechanical calculations were undertaken in order to determine the stability of the eight diastereomer structures of compound 4a. The crystal structure of 4k was determined by X-ray crystallography. Reaction mechanism can proceed through Knoevenagel, Aldol condensations, Diels-Alder cycloaddition, and Michael addition.
References
[1] (a) A. Dömling, W. Wang, K. Wang, Chem. Rev. 2012, 112, 3083.| Crossref | GoogleScholarGoogle Scholar | 22435608PubMed |
(b) A. Dömling, Chem. Rev. 2006, 106, 17.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. Zhu, Eur. J. Org. Chem. 2003, 1133.
| Crossref | GoogleScholarGoogle Scholar |
(d) L. F. Tietze, Chem. Rev. 1996, 96, 115.
| Crossref | GoogleScholarGoogle Scholar |
[2] M. Dehbashi, M. Aliahmad, M. R. Mohammad Shafiee, M. Ghashang, Synth. React. Inorg. Metal. Org. Nano-Metal. Chem. 2013, 43, 1301.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnvFWhsb4%3D&md5=42ad92fb116a67e1932b6294b30fe58dCAS |
[3] J. Zhu, H. Bienaymé (Eds), Multicomponent Reactions 2005 (Wiley-VCH: Weinheim, Germany).
[4] P. N. Craig, in Comprehensive Medicinal Chemistry (Ed. C. J. Drayton) 1991 (Pergamon Press: New York).
[5] J. P. Michael, Nat. Prod. Rep. 1997, 14, 605.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXotVCqs7w%3D&md5=24f2e67353ea957bfcbfa6e385c878ceCAS |
[6] (a) For reviews, see: W. A. Ayer, L. S. Trifonov, The Alkaloids 1994, 45, 233.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmvVSqsLo%3D&md5=3fb9934a72c03bc01bb656812ae4a4d7CAS |
(b) W. A. Ayer, Nat. Prod. Rep. 1991, 8, 455.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. B. MacLean, The Alkaloids 1985, 26, 241.
| Crossref | GoogleScholarGoogle Scholar |
(d) D. B. MacLean, The Alkaloids 1973, 14, 347.
| Crossref | GoogleScholarGoogle Scholar |
(e) D. B. MacLean, The Alkaloids 1968, 10, 305.
| Crossref | GoogleScholarGoogle Scholar |
(f) C.-K. Sha, F.-K. Lee, C.-J. Chang, J. Am. Chem. Soc. 1999, 121, 9875.
| Crossref | GoogleScholarGoogle Scholar |
(g) J. P. Williams, D. R. St Laurent, D. Friedrich, E. Pinard, B. A. Roden, L. A. Paquette, J. Am. Chem. Soc. 1994, 116, 4689.
| Crossref | GoogleScholarGoogle Scholar |
(h) T. Hemscheidt, I. D. Spenser, J. Am. Chem. Soc. 1996, 118, 1799.
| Crossref | GoogleScholarGoogle Scholar |
(i) T. Hemscheidt, I. D. Spenser, J. Am. Chem. Soc. 1993, 115, 3020.
| Crossref | GoogleScholarGoogle Scholar |
(j) J. S. Liu, Y. L. Zhu, C. M. Yu, Y. Z. Zhou, Y. Y. Han, F. W. Wu, B. F. Qi, Can. J. Chem. 1986, 64, 837.
| Crossref | GoogleScholarGoogle Scholar |
[7] (a) J. A. Gunn, J. Physiol. 1941, 100, 64.
| 1:CAS:528:DyaH3MXkvVKmsg%3D%3D&md5=7d74a4714952f6b673e7422502a778b2CAS | 16991510PubMed |
(b) M. Hamon, M. Mallat, A. Herbet, D. L. Nelson, M. Audinot, L. Pichat, J. Glowinski, J. Neurochem. 1981, 36, 613.
| Crossref | GoogleScholarGoogle Scholar |
(c) K. J. Miller, A. King, L. Demchyshyn, H. Niznik, M. Teitler, Eur. J. Pharmacol. 1992, 227, 99.
| Crossref | GoogleScholarGoogle Scholar |
(d) Y. Hirasawa, J.-I. Kobayashi, H. Morita, Org. Lett. 2006, 8, 123.
| Crossref | GoogleScholarGoogle Scholar |
[8] (a) I. Bonnard, M. Rolland, C. Francisco, B. Banaigs, Lett. Pept. Sci. 1997, 4, 289.
| 1:CAS:528:DyaK1cXotF2itg%3D%3D&md5=c573620be82e9ffb8424141ea4d11181CAS |
(b) S. M. Chande, R. R. Khanwelkar, Tetrahedron Lett. 2005, 46, 7787.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. S. Ivanov, Chem. Soc. Rev. 2008, 37, 789.
| Crossref | GoogleScholarGoogle Scholar |
(d) D. B. Ramachary, N. S. Chowdari, C. F. Barbas III, Angew. Chem. Int. Ed. 2003, 42, 4233.
| Crossref | GoogleScholarGoogle Scholar |
(e) F. Liéby-Muller, T. Constantieux, J. Rodriguez, J. Am. Chem. Soc. 2005, 127, 17176.
| Crossref | GoogleScholarGoogle Scholar |
[9] (a) D. Pizzirani, M. Roberti, M. Recanatini, Tetrahedron Lett. 2007, 48, 7120.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVSksLzE&md5=fde980888f666e40c5691c93053c43d9CAS |
(b) D. Pizzirani, M. Roberti, S. Grimaudo, A. Di Cristina, R. M. Pipitone, M. Tolomeo, M. Recanatini, J. Med. Chem. 2009, 52, 6936.
| Crossref | GoogleScholarGoogle Scholar |
(c) E. S. Shults, E. A. Semenov, A. A. Johnson, S. P. Bondarenko, I. Y. Bagryanskaya, Y. V. Gatilov, G. A. Tolstikov, Y. Pommier, Bioorg. Med. Chem. Lett. 2007, 17, 1362.
| Crossref | GoogleScholarGoogle Scholar |
[10] (a) D. B. Ramachary, C. F. Barbas, Chem. Eur. J. 2004, 10, 5323.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpsF2rtb8%3D&md5=f97cd48a107c502fc0bb3a9b0372fa5fCAS | 15390208PubMed |
(b) D. B. Ramachary, C. F. Barbas, Org. Lett. 2005, 7, 1577.
| Crossref | GoogleScholarGoogle Scholar |
[11] A. Dömling, I. Ugi, Angew. Chem. Int. Ed. Engl. 2000, 39, 3168.
| Crossref | GoogleScholarGoogle Scholar | 11028061PubMed |
[12] (a) N. Kagawa, M. Toyota, M. Ihara, Aust. J. Chem. 2004, 57, 655.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsV2jurk%3D&md5=2d0ff298e11782c63bcc25112c85e52aCAS |
(b) D. Cież, J. Kalinowska-Tłuścik, J. Marchewka, Aust. J. Chem. 2012, 65, 333.
(c) X. Fan, X. Hu, X. Zhang, J. Wang, Aust. J. Chem. 2004, 57, 1067.
| Crossref | GoogleScholarGoogle Scholar |
(d) X. Jiang, R. Wang, Chem. Rev. 2013, 113, 5515.
| Crossref | GoogleScholarGoogle Scholar |
[13] M. T. Maghsoodlou, S. M. Habibi-Khorassani, A. Moradi, N. Hazeri, A. Davodi, S. S. Sajadikhah, Tetrahedron 2011, 67, 8492.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1amtrjN&md5=039fb48ee1914caa838ef41c3154effaCAS |
[14] M. T. Maghsoodlou, S. M. Habibi-Khorassani, R. Heydari, F. Rostami-Charati, N. Hazeri, M. Lashkari, M. Rostamizadeh, G. Marandi, A. Sobolev, M. Makha, Tetrahedron Lett. 2009, 50, 4439.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsFCiu7c%3D&md5=f527f7bed9a4ee4e622e8f7fa8e178aeCAS |
[15] H. Nourollah, M. T. Maghsoodlou, S. M. Habibi-Khorassani, M. Ziyaadini, G. Marandi, K. Khandan-Barani, H. R. Bijanzadeh, ARKIVOC 2007, xiii, 34.
[16] M. T. Maghsoodlou, N. Hazeri, S. M. Habibi-Khorasani, G. Marandi, M. Nassiri, Synth. Commun. 2005, 35, 2771.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFyitLnF&md5=79af0cf3cd7ac01897990c03cf0564f3CAS |
[17] M. T. Maghsoodlou, N. Hazeri, S. M. Habibi-Khorasani, R. Heydari, G. Marandi, M. Nassiri, Synth. Commun. 2005, 35, 2569.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVSks7vF&md5=b13da962405c8707d73c7b71fcee848cCAS |
[18] N. Hazeri, M. T. Maghsoodlou, S. M. Habibi-Khorassani, G. Marandi, K. Khandan-Barani, M. Ziyaadini, A. Aminkhani, ARKIVOC 2007, 2007, 173.
| Crossref | GoogleScholarGoogle Scholar |
[19] M. T. Maghsoodlou, N. Hazeri, S. M. Habibi-Khorassani, G. Marandi, M. Nassiri, J. Heterocycl. Chem. 2006, 43, 481.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XivVWms7c%3D&md5=799d0e4108d89b31bf0059bb683fb07dCAS |
[20] M. T. Maghsoodlou, N. Hazeri, S. M. Habibi-Khorassani, M. Ziyaadini, G. Marandi, K. Khandan-Barani, P. Ebrahimi, F. Rostami-Charati, A. Sobolev, M. Makha, J. Heterocycl. Chem. 2009, 46, 843.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtF2hsLfN&md5=7b8efdc552092c8e92c355b1149ae577CAS |
[21] M. Lashkari, M. T Maghsoodlou, N. Hazeri, S. M. Habibi-khorassani, N. Akbarzadeh-Torbati, S. García-Granda, L. Torre-Fernández, J. Heterocyclic Chem. 2014, in press.
| Crossref | GoogleScholarGoogle Scholar |
[22] P. Wang, L. Song, H. Yi, M. Zhang, S. Zhu, H. Deng, M. Shao, Tetrahedron Lett. 2010, 51, 3975.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVKgu70%3D&md5=594e8fd7c89e515dea93f22c0c11983dCAS |
[23] (a) D. B. Ramachary, K. Anebousely, N. S. Chowdari, C. F. Barbas, J. Org. Chem. 2004, 69, 5838.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmt12ks74%3D&md5=1a7d91aea6c7cb9a2f5a97cf6382711eCAS | 15373469PubMed |
(b) D. B. Ramachary, N. S. Chowdari, C. F. Barbas, Synlett 2003, 1910.
(c) B. Jiang, W.-J. Hao, J.-P. Zhang, S.-J. Tu, F. Shib, Org. Biomol. Chem. 2009, 7, 2195.
| Crossref | GoogleScholarGoogle Scholar |
(d) J. Shi, Y. Liu, M. Wang, L. Lin, X. Liu, X. Feng, Tetrahedron 2011, 67, 1781.
| Crossref | GoogleScholarGoogle Scholar |
(e) W.-J. Hao, B. Bo Jiang, S.-J. Tu, S.-S. Wu, Z.-G. Han, X.-D. Cao, X.-H. Zhang, S. Yan, F. Shi, J. Comb. Chem. 2009, 11, 310.
| Crossref | GoogleScholarGoogle Scholar |
[24] (a) S.-J. Tu, X. Zhu, J. Zhang, J. Xu, Y. Zhang, Q. Wang, R. Jia, B. Jiang, J. Zhang, C. Yao, Bioorg. Med. Chem. Lett. 2006, 16, 2925.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvFygtrc%3D&md5=cae3b9a18e54bc60427e6dc50f6a87c2CAS |
(b) X.-S. Wang, M.-M. Zhang, H. Jiang, C.-S. Yao, S.-J. Tu, Tetrahedron 2007, 63, 4439.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. Sun, E.-Y. Xia, Q. Wu, C.-G. Yan, ACS Comb. Sci. 2011, 13, 421.
| Crossref | GoogleScholarGoogle Scholar |
[25] (a) G. A. Petersson, M. A. Al-Laham, J. Chem. Phys. 1991, 94, 6081.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXitlGiu7o%3D&md5=83ead6e7b0cd977706c088feb1b4d8f4CAS |
(b) G. A. Petersson, A. Bennett, T. G. Tensfeldt, M. A. Al-Laham, W. A. Shirley, J. Mantzaris, J. Chem. Phys. 1988, 89, 2193.
| Crossref | GoogleScholarGoogle Scholar |
[26] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, J. A. Pople, GAUSSIAN 98 1998 (Gaussian, Inc.: Pittsburgh, PA).
[27] (a) A. D. Becke, Phys. Rev. A 1988, 38, 3098.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXmtlOhsLo%3D&md5=89a4d6eea189a0acadf44cab2961b4a3CAS | 9900728PubMed |
(b) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
| Crossref | GoogleScholarGoogle Scholar |