Highly Improved Electrooxidation of Captopril on Copper Hexacyanoferrate/Ordered Mesoporous Carbon-Modified Glassy Carbon Electrode
Shengjun Lu A B , Pan Lu A B , Cheng Li A B , Caihong Wang A B and Jie Yu B CA College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550003, China.
B National Engineering Research Center for Compounding and Modification of Polymeric Materials, Guiyang 550014, China.
C Corresponding author. Email: yujiegz@126.com
Australian Journal of Chemistry 67(6) 851-857 https://doi.org/10.1071/CH13650
Submitted: 25 October 2013 Accepted: 21 January 2014 Published: 7 February 2014
Abstract
Using an electrochemical polymerization process, a copper hexacyanoferrate/ordered mesoporous carbon-modified glassy carbon electrode (CuHCF/OMC/GCE) was prepared. The performance of CuHCF/OMC was compared with that of CuHCF and the properties of the new material were improved. A sensor for sensitive detection of captopril was developed based on CuHCF/OMC-modified glassy carbon electrode. The composition and morphology of the as-prepared CuHCF/OMC products were characterized by energy-dispersive X-ray spectroscopy and scanning electron microscopy. The electrochemical behaviour and electrocatalytic performance of the CuHCF/OMC-modified glassy carbon electrode towards the oxidation of captopril were evaluated by cyclic voltammetry. Results showed that the CuHCF/OMC-modified electrode exhibits two well-defined redox peaks. The linear range for the detection of captopril was from 1.0 × 10–5 to 2.7 × 10–3 M, with a correlation coefficient of 0.999, and the detection limit was 1.2 × 10–6 M based on a signal-to-noise ratio of 3.
References
[1] M. Ondetti, B. Rubin, D. Cushman, Science 1977, 196, 441.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXktFGkt78%3D&md5=3d98babfce80792241c076c96436e866CAS | 191908PubMed |
[2] J. Romankiewicz, R. Brogden, R. Heel, T. Speight, G. Avery, Drugs 1983, 25, 6.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXhtFyqurg%3D&md5=6160e48ad9b84aae4c5a13a188b0e580CAS | 6218982PubMed |
[3] D. Bagchi, R. Prasad, D. K. Das, Biochem. Bioph. Res. Co. 1989, 158, 52.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXovVarsA%3D%3D&md5=1930a8770b2b4bb952c0704ddbda0aa0CAS |
[4] N. Aykin, R. Neal, M. Yusof, N. Ercal, Biomed. Chromatogr. 2001, 15, 427.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotl2gsb0%3D&md5=d65136148e94471da750d9a8aaa137dbCAS | 11746237PubMed |
[5] A. Pimenta, A. Araújo, M. Montenegro, Anal. Chim. Acta 2002, 470, 185.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xntlantrg%3D&md5=efceda8975abcb84db8856e2e7f268baCAS |
[6] J. Kelly, K. O’Malley, Clin. Pharmacokinet. 1990, 19, 177.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3czmslertw%3D%3D&md5=e99aa22dc704e4468044a2153eaa169bCAS | 2203579PubMed |
[7] A. Golik, D. Modai, Z. Averbukh, M. Sheffy, A. Shamis, N. Cohen, U. Shaked, E. Dolev, Metabolism 1990, 39, 665.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3czgvFGqsQ%3D%3D&md5=f707c2b077a83ea06ddcbc38f55f926bCAS | 2195291PubMed |
[8] J. Russell, J. McKeown, C. Hensman, W. Smith, J. Reglinski, J. Pharmaceut. Biomed. 1997, 15, 1757.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlsVGrsLk%3D&md5=f6ab96466c9158e3e5494df1824869f5CAS |
[9] A. Khedr, H. El‐Sherief, Biomed. Chromatogr. 1998, 12, 57.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXit1Gjsb0%3D&md5=63232a36b086489f7d1269cad4ed6928CAS | 9568270PubMed |
[10] N. Cheviron, A. Rousseau-Plasse, M. Lenfant, M.-T. Adeline, P. Potier, J. Thierry, Anal. Biochem. 2000, 280, 58.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXit1Gjs70%3D&md5=5da66878b6f2385f894ab4a7b298add5CAS | 10805521PubMed |
[11] L. Wang, X.-F. Yang, M. Zhao, J. Fluoresc. 2009, 19, 593.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosVGis70%3D&md5=8fbe90fd368c8b8eef90b543d4145ea1CAS | 19050997PubMed |
[12] X. Zheng, Z. Zhang, B. Li, Electroanal. 2001, 13, 1046.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmslSrtr4%3D&md5=d0d1df25d8f3c8775042bec50cfa2733CAS |
[13] M. Sorouraddin, M. Iranifam, A. Imani-Nabiyyi, J. Fluoresc. 2009, 19, 575.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosVGisLo%3D&md5=c72cfc6f72dc086ba86e47730c09a025CAS | 19057986PubMed |
[14] H. Kadin, R. B. Poet, J. Pharmacol. Sci. 1982, 71, 1134.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XmtVOls7Y%3D&md5=9fe8ba5fad8b76363de40206b543569cCAS |
[15] S. Hillaert, W. Van den Bossche, J. Pharmaceut. Biomed. 1999, 21, 65.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmtVyisbw%3D&md5=4fdb864b1606faf01436997b96bed389CAS |
[16] T. Pérez‐Ruiz, C. Martínez‐Lozano, R. Galera, Electrophoresis 2006, 27, 2310.
| Crossref | GoogleScholarGoogle Scholar | 16718646PubMed |
[17] H. J. Leis, M. Leis, W. Welz, E. Malle, J. Chromatogr. B 1990, 529, 299.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXltVyltr4%3D&md5=a15fe6303b3e1a49eab1eb280178a341CAS |
[18] P. D. Tzanavaras, D. G. Themelis, A. Economou, G. Theodoridis, Talanta 2002, 57, 575.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvF2qsLo%3D&md5=95dbf710826a22ef5ffb4abd7ab3d722CAS | 18968657PubMed |
[19] N. Rahman, M. Singh, M. N. Hoda, Il Farmaco 2005, 60, 569.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvFKqtb4%3D&md5=fbdf76830c19f2efe96db7fa78f142dfCAS | 15927181PubMed |
[20] A. A. Ensafi, H. Karimi-Maleh, M. Ghiaci, M. Arshadi, J. Mater. Chem. 2011, 21, 15022.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtF2htLfP&md5=eb2fef6ccd6fd3e2a55f89be9321cc17CAS |
[21] G. Ziyatdinova, G. Budnikov, V. Pogorel’tsev, J. Anal. Chem. 2006, 61, 798.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsFyisLk%3D&md5=92a34669f6c0bdfb5aee55076bc92c57CAS |
[22] W. Siangproh, P. Ngamukot, O. Chailapakul, Sensor. Actuat. B - Chem. 2003, 91, 60.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjs1Cgsb0%3D&md5=a07b4d6d04dd356f31628ef4e476c489CAS |
[23] H. Bahramipur, F. Jalali, Int. J. Electrochem. Sc. 2011, 2011, 1.
| Crossref | GoogleScholarGoogle Scholar |
[24] S. Shahrokhian, M. Karimi, H. Khajehsharifi, Sensor. Actuat. B - Chem. 2005, 109, 278.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvVWnt74%3D&md5=425bd4746a87e30d752107917d4c663bCAS |
[25] R. Ryoo, S. H. Joo, S. Jun, J. Phys. Chem. B 1999, 103, 7743.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltlyqu7o%3D&md5=b7e6132cc64247363cd09c0518098fbcCAS |
[26] S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna, O. Terasaki, J. Am. Chem. Soc. 2000, 122, 10712.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnt1Slu74%3D&md5=5b361cb129e4323d505538b752b99b90CAS |
[27] S. H. Joo, S. J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, R. Ryoo, Nature 2001, 412, 169.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsFWmsL8%3D&md5=8d8548eb679f09d6bb8fa18cc3e4773aCAS | 11449269PubMed |
[28] F. Zeng, Z. Hou, B. He, C. Ge, J. Cao, Y. Kuang, Mater. Res. Bull. 2012, 47, 2104.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmvFKmt7g%3D&md5=4b8461cc402ef1e1a571981c313e7d05CAS |
[29] M. Hartmann, A. Vinu, G. Chandrasekar, Chem. Mater. 2005, 17, 829.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlsFCksA%3D%3D&md5=4ccf3362f07305fea6a29720fdc4e71cCAS |
[30] J. Ding, K.-Y. Chan, J. Ren, F.-S. Xiao, Electrochim. Acta 2005, 50, 3131.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjvVCrsL8%3D&md5=57de50ffb33cd8cf7c4c9cd38b04633aCAS |
[31] H. Zhou, S. Zhu, M. Hibino, I. Honma, J. Power Sources 2003, 122, 219.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltFCru7o%3D&md5=40e61e1cb801363854295112a72ec3e1CAS |
[32] L. Li, H. Song, X. Chen, Electrochim. Acta 2006, 51, 5715.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotVaqt7c%3D&md5=79d5661fe77943780ff821d9d6be129bCAS |
[33] V. D. Neff, J. Electrochem.Soc. 1978, 125, 886.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXktlehtrc%3D&md5=e8d6415bd11a5f95f8a902ebf611ee1dCAS |
[34] C. D. Wessells, S. V. Peddada, R. A. Huggins, Y. Cui, Nano Lett. 2011, 11, 5421.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtl2ktL7J&md5=4b874f7b775ce6f9c6fba8f61973f9fdCAS | 22043814PubMed |
[35] P. Lu, S. Liu, G. Dai, Y. Lei, Y. Liang, Aust. J. Chem. 2013, 66, 983.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Ois73P&md5=eb798d07e12b242aa73caeddfa336c92CAS |
[36] N. Sattarahmady, H. Heli, Sensor Lett. 2012, 10, 794.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVyltLjN&md5=87bc2077b922796527a74682a5802e56CAS |
[37] H. Heli, S. Majdi, N. Sattarahmady, A. Parsaei, J. Solid State Electrochem. 2010, 14, 1637.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXns1Gjs70%3D&md5=f5af1fb2c9ef8ff2ed5caf6df0c655e6CAS |
[38] S.-F. Hong, S.-C. Hwang, L.-C. Chen, Electrochim. Acta 2008, 53, 6215.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntFGhtro%3D&md5=c0825bd752004d8b7d87009a1f68b696CAS |
[39] M. Yang, J. Jiang, Y. Yang, X. Chen, G. Shen, R. Yu, Biosens. Bioelectron. 2006, 21, 1791.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsFyiu7o%3D&md5=8ad7dd5f609fdd6623343c630b246818CAS | 16230002PubMed |
[40] D. J. Zhao, F. Yan, Y. F. Xuan, X. P. Dong, F. N. Xi, Adv. Mater. Res. 2012, 586, 18.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXps1SksA%3D%3D&md5=419fccb7377c31609c53286faa3523c1CAS |
[41] M. Majidi, K. Asadpour-Zeynali, B. Hafezi, Electrochim. Acta 2009, 54, 1119.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsV2itLnI&md5=fc863c0505f343da66ff078bbe0c6a3dCAS |
[42] P. Wang, Y. Yuan, X. Jing, G. Zhu, Talanta 2001, 53, 863.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntFyjug%3D%3D&md5=3029842cf4c065db85a554c3ace35028CAS | 18968177PubMed |
[43] A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications 1980 (Wiley: New York, NY).
[44] C. E. Banks, R. R. Moore, T. J. Davies, R. G. Compton, Chem. Commun. 2004, 16, 1804.
| Crossref | GoogleScholarGoogle Scholar |
[45] E. Laviron, J. Electroanal. Chem. 1979, 100, 263.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXltFCntL4%3D&md5=f0219263ddda887e676b891b7a29ddd3CAS |
[46] M. R. Majidi, K. Asadpour-Zeynali, K. Shahmoradi, Y. Shivaeefar, J. Chin. Chem. Soc. 2010, 57, 391.
| 1:CAS:528:DC%2BC3cXhtF2mu7bJ&md5=e0e2f3a50c445a8c1000595a6f51c7e7CAS |
[47] P. Barathi, A. Senthil Kumar, M. R. B. Karthick, Int. J. Electrochem. Sc. 2011, 2011, 1.
| Crossref | GoogleScholarGoogle Scholar |
[48] Y. Mu, D. Jia, Y. He, Y. Miao, H.-L. Wu, Biosens. Bioelectron. 2011, 26, 2948.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsVeiug%3D%3D&md5=cfb4c25ea8a758b181b8b8942d7127d1CAS | 21167705PubMed |
[49] H. Bahramipur, F. Jalali, Int. J. Electrochem. Sc. 2011, 2011, 1.
| Crossref | GoogleScholarGoogle Scholar |
[50] T. Ralph, M. Hitchman, J. Millington, F. Walsh, J. Electroanal. Chem. 1994, 375, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmtFGks7Y%3D&md5=6bae0a549cbe247c8edce0b0d7fb065bCAS |
[51] A. A. Ensafi, B. Rezaei, Z. Mirahmadi-Zare, H. Karimi-Maleh, J. Braz. Chem. Soc. 2011, 22, 1315.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVSisbnM&md5=009a70e809369cab82190fd112ab5ce0CAS |
[52] A. A. Ensafi, M. Monsef, B. Rezaei, H. Karimi-Maleh, Anal. Methods. 2012, 4, 1332.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xms1ygtLg%3D&md5=605cb0dd5661c117379d08c5201e367dCAS |
[53] M. Fouladgar, Int. J. Electrochem. Sc. 2011, 6, 705.
| 1:CAS:528:DC%2BC3MXjtl2ks7c%3D&md5=2497c5d20207af08ef67e8ad4b0332f8CAS |