Role of Pristine and Acid-Functionalized Fullerene on Breaking Dye Aggregates and its Impact on the Efficiency of Solar Cells
Syed Mujtaba Shah A B , Zafar Iqbal A , Muzaffar Iqbal A , Naila Shahzad A , Amina Hana A , Hazrat Hussain A and Muhammad Raheel AA Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan.
B Corresponding author. Email: smschem69@yahoo.com
Australian Journal of Chemistry 67(5) 819-825 https://doi.org/10.1071/CH13608
Submitted: 6 November 2013 Accepted: 8 January 2014 Published: 17 February 2014
Abstract
Porphyrin dyes have an inherent tendency to aggregate. This leads to a self-quenching phenomenon that hinders electron transfer to the conduction band of semiconductors in dye-sensitized solar cells. Self-quenching adversely affects the efficiency of solar cells. Here, we report the interaction of porphyrin with pristine and acid-functionalized fullerene molecules on the surface of ZnO nanoparticles under chemisorbed conditions. Chemisorption of porphyrin only on ZnO nanoparticles instigates aggregation of the porphyrin molecules. These aggregates can be effectively broken by chemisorbing fullerene molecules on the surface of the ZnO nanoparticles. This is due to self-assembly formation processes because of porphyrin–fullerene interactions. The nanohybrid material, consisting of ZnO nanorods, acid-functionalized porphyrin, and fullerene derivatives, was characterized by UV–visible spectroscopy, fourier transform infrared spectroscopy, fluorescence spectroscopy, and transmission electron microscopy. The material generates better performing dye-sensitized solar cells when compared with those fabricated from porphyrin-based photo-active material.
References
[1] A. Tsuda, A. Osuka, Science 2001, 293, 79.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltFCnsbs%3D&md5=05de233f6c37a5d22244513e8c060c69CAS | 11441176PubMed |
[2] D. M. Guldi, Chem. Soc. Rev. 2002, 31, 22.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xhslenuro%3D&md5=8641b3503a2c79b7a33e991ff5516f67CAS | 12108980PubMed |
[3] R. F. Khairutdinov, N. Serpone, J. Phys. Chem. B 1999, 103, 761.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjsFOrsw%3D%3D&md5=1290e7ff6c2f5fdf1409ef492b1f06c1CAS |
[4] R. Kasha, H. R. Rawls, M. A. El-Bayoumi, Pure Appl. Chem. 1965, 11, 371.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXhsFantQ%3D%3D&md5=df09fdd028f8c9ecadd9a3a1cece060aCAS |
[5] C. A. Hunter, J. M. K. Sanders, A. J. E. Stone, Chem. Phys. 1989, 133, 395.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXlt1aku78%3D&md5=7319e35b972c9e2b581dc610697538c9CAS |
[6] M. Kasha, Radiat. Res. 1963, 20, 55.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXmsVM%3D&md5=6134274972fd2294de0b7cbe39832182CAS | 14061481PubMed |
[7] N. Armaroli, G. Marconi, L. Echegoyen, J.-P. Bourgeois, F. Diederich, Chem. Eur. J. 2000, 6, 1629.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtlOju70%3D&md5=92822c6642a21a6da88f3f99ed042cd9CAS | 10839180PubMed |
[8] D. M. Guldi, Chem. Commun. 2000, 321.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtlentbY%3D&md5=338cbf47ca37e87ceddff0a6bbdf73c8CAS |
[9] H. Imahori, Y. Sakata, Adv. Mater. 1997, 9, 537.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjvFKqs7o%3D&md5=0859e2f0eb192a523ecf355f686fdeadCAS |
[10] J. Schnadt, J. O’shea, L. Pathhey, L. Kjeldgaard, J. Ahlund, K. Nilson, J. S. Shi, M. Krempaskey, M. Shi, O. Karis, C. Glover, H. Siegbahn, N. Martensson, J. Chem. Phys. 2003, 119, 12462.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXps1WksLk%3D&md5=f1e2c6e2a2130c87ffd792609b234fa5CAS |
[11] Y. Sun, T. Drovetskaya, R. Bolskar, R. Bau, P. Boyd, C. Reed, J. Org. Chem. 1997, 62, 3642.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtFGisLY%3D&md5=db6c33f0b300bf8dce0abfa2890f0125CAS |
[12] D. M. Guldi, T. D. Ros, P. Braiuca, M. Prato, Photochem. Photobiol. Sci. 2003, 2, 1067.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptVWrsr8%3D&md5=6e3de7694f0c4c098e0a19f3c0d6dc5fCAS | 14690216PubMed |
[13] T. J. Kesti, N. V. Tkachenko, V. Vehmanen, H. Yamada, H. Imahori, S. Fukuzumi, H. Lemmetyinen, J. Am. Chem. Soc. 2002, 124, 8067.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xktl2msrg%3D&md5=a915ac64817a9da360b51e3fb9da1193CAS | 12095350PubMed |
[14] D. Gust, T. A. Moore, A. L. Moore, Acc. Chem. Res. 2001, 34, 40.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnvVWmtrw%3D&md5=d94b8d3f222ef3ca486a6ca6b6a22fc0CAS | 11170355PubMed |
[15] H. Imahori, J. Phys. Chem. B 2004, 108, 6130.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsVSksLc%3D&md5=2d7628d5ef278fd6a9123b997337b0e7CAS | 18950092PubMed |
[16] F. D’Souza, P. M. Smith, M. E. Zandler, A. L. McCarty, M. Itou, Y. Araki, O. Ito, J. Am. Chem. Soc. 2004, 126, 7898.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksFelsbg%3D&md5=a1e34d6757b7bf17b134d865ea90126aCAS | 15212538PubMed |
[17] A. Łapiński, A. Graja, I. Olejniczak, A. Bogucki, H. Imahori, Chem. Phys. 2004, 305, 277.
| Crossref | GoogleScholarGoogle Scholar |
[18] H. Imahori, Org. Biomol. Chem. 2004, 2, 1425.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvVSjt7s%3D&md5=9ba3e6d9ba102b719d2f66fddb3b48a6CAS | 15136797PubMed |
[19] R. Taylor, Lecture Notes in Fullerenes Chemistry 1996 (Imperial College Press: London).
[20] S. M. Shah, A. Kira, H. Imahori, D. Ferry, H. Brisset, F. Fages, J. Ackermann, J. Colloid Interface Sci. 2012, 386, 268.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlWlsb7J&md5=01e96be8b3e7d0583b4b86d59181861fCAS | 22918046PubMed |
[21] R. N. Ali, H. Naz, S. M. Shah, Dyes Pigments 2013, 99, 571.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslWqtb%2FM&md5=e1bdacae7d3b11b614727db7a0fa943bCAS |
[22] C. Pacholski, A. Kornowski, H. Weller, Angew. Chem. Int. Ed. 2002, 41, 1188.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivVyktL0%3D&md5=65b42bf9bc9fc52013e42b1822c35b2eCAS |
[23] T. Hasobe, H. Imahori, P. V. Kamat, T. K. Ahn, S. K. Kim, D. Kim, A. Fujimoto, T. Hirakawa, S. Fukuzumi, J. Am. Chem. Soc. 2005, 127, 1216.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpsV2ktbc%3D&md5=6a472bb70c687cb22d4a107efb6b1c20CAS | 15669861PubMed |
[24] T. Ma, K. Inoue, K. Yao, H. Noma, T. Shuji, E. Abe, J. Yu, X. Wang, B. Zhang, J. Electroanal. Chem. 2002, 537, 31.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptFaitr8%3D&md5=a07aa97b3f1660529436fcfc04872082CAS |
[25] O. Taratula, E. Galoppini, D. Wang, D. Chu, Z. Zhang, H. Chen, G. Saraf, Y. Lu, J. Phys. Chem. B 2006, 110, 6506.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xit1Oksr4%3D&md5=cb6d2afb85f1ef6055c136d6f4db41adCAS | 16570948PubMed |