Synthesis of Fluorinated Aromatic Compounds by One-Pot Benzyne Generation and Nucleophilic Fluorination
Takashi Ikawa A B C , Shigeaki Masuda B , Tsuyoshi Nishiyama B , Akira Takagi B and Shuji Akai A B CA Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan.
B School of Pharmaceutical Sciences, University of Shizuoka, Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan.
C Corresponding authors. Email: ikawa@phs.osaka-u.ac.jp; akai@phs.osaka-u.ac.jp
Australian Journal of Chemistry 67(3) 475-480 https://doi.org/10.1071/CH13548
Submitted: 10 October 2013 Accepted: 21 November 2013 Published: 24 December 2013
Abstract
The fluorination of substituted benzenes using fluoride ions under mild reaction conditions has been one of the most important challenges for the synthesis of biologically active fluorinated aromatic compounds; however, only a few synthetically useful methods are known. In this paper, it is reported that the nucleophilic fluorination of benzynes, generated from either 2-(trialkylsilyl)phenyl nonafluorobutanesulfonates or 2-(trialkylsilyl)phenols, meets this challenge. In particular, the fluorination starting from 2-(trialkylsilyl)phenols for fabricating aryl fluorides involves three sequential reactions in one-pot: the nonaflylation of phenols, benzyne generation, and nucleophilic fluorination of the benzynes. The regioselectivities of these reactions are controlled by the substituents at the C3-position of the benzynes.
References
[1] (a) Bioorganic and Medicinal Chemistry of Fluorine (Eds J.-P. Bégué, D. Bonnet-Delpon) 2008 (John Wiley & Sons, Inc.: Hoboken, NJ).(b) Fluorine in Medicinal Chemistry and Chemical Biology (Ed. I. Ojima) 2009 (Wiley-Blackwell: Chichester).
(c) S. Purser, P. R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev. 2008, 37, 320.
| Crossref | GoogleScholarGoogle Scholar |
(d) R. Filler, R. Saha, Future Med. Chem. 2009, 1, 777.
| Crossref | GoogleScholarGoogle Scholar |
(e) D. O’Hagan, J. Fluor. Chem. 2010, 131, 1071.
| Crossref | GoogleScholarGoogle Scholar |
(f) A. Schäfer, A. Wellner, M. Strauss, A. Schäfer, G. Wolber, R. Gust, J. Med. Chem. 2012, 55, 9607.
| Crossref | GoogleScholarGoogle Scholar |
[2] N. A. McGrath, M. Brichacek, J. T. Njardarson, J. Chem. Educ. 2010, 87, 1348.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1aqsb%2FP&md5=be2268e062114025e9203e308acd55ddCAS |
[3] (a) For selected traditional nucleophilic fluorinations, see: G. Balz, G. Schiemann, Ber. Dtsch. Chem. Ges. 1927, 60, 1186.
| Crossref | GoogleScholarGoogle Scholar |
(b) A. Shah, V. W. Pike, D. A. Widdowson, J. Chem. Soc., Perkin Trans. 1 1998, 2043.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. J. Adams, J. H. Clark, Chem. Soc. Rev. 1999, 28, 225.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) For selected traditional electrophilic fluorinations, see: R. E. Banks, S. N. Mohialdin-Khaffaf, G. S. Lal, I. Sharif, R. G. Syvret, J. Chem. Soc. Chem. Commun. 1992, 595.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xkt1Kmsrg%3D&md5=2f8cfb2a4fffcd4d06a79aff0a3eac8cCAS |
(b) G. S. Lal, G. P. Pez, R. G. Syvret, Chem. Rev. 1996, 96, 1737.
| Crossref | GoogleScholarGoogle Scholar |
(c) G. Villalba, R. U. Ayres, H. Schroder, J. Ind. Ecol. 2007, 11, 85.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) T. Furuya, A. E. Strom, T. Ritter, J. Am. Chem. Soc. 2009, 131, 1662.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntlOitg%3D%3D&md5=5e0b7b204689c66de4864387166d8d97CAS | 19191693PubMed |
(b) P. Tang, T. Furuya, T. Ritter, J. Am. Chem. Soc. 2010, 132, 12150.
| Crossref | GoogleScholarGoogle Scholar |
(c) T. Furuya, J. E. M. N. Klein, T. Ritter, Synthesis 2010, 1804.
| Crossref | GoogleScholarGoogle Scholar |
(d) T. Liang, C. N. Neumann, T. Ritter, Angew. Chem. Int. Ed. 2013, 52, 8214.
| Crossref | GoogleScholarGoogle Scholar |
[6] P. Tang, W. Wang, T. Ritter, J. Am. Chem. Soc. 2011, 133, 11482.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovVehu7s%3D&md5=ec919ad79b66f85969349c5a6e385b6fCAS | 21736304PubMed |
[7] PhenoFluor is now commercially available from Sigma-Aldrich Co.
[8] D. A. Watson, M. Su, G. Teverovskiy, Y. Zhang, J. García-Fortanet, T. Kinzel, S. L. Buchwald, Science 2009, 325, 1661.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGqt7zM&md5=82573c9aba1c38b6bbfe8e71732a8b70CAS | 19679769PubMed |
[9] (a) H. Nemoto, T. Nishiyama, S. Akai, Org. Lett. 2011, 13, 2714.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltlyjt7g%3D&md5=3ed90a7146ddb5b655b9f2fc5511d02aCAS | 21528838PubMed |
(b) H. Nemoto, K. Takubo, K. Shimizu, S. Akai, Synlett 2012, 23, 1978.
| Crossref | GoogleScholarGoogle Scholar |
[10] (a) The Chemistry of Phenols (Ed. Z. Rappoport) 2003 (John Wiley & Sons Ltd.: Chichester).
(b) For activation of phenol and its derivatives, see: B.-J. Li, D.-G. Yu, C.-L. Sun, Z.-J. Shi, Chem.–Eur. J. 2011, 17, 1728.
| Crossref | GoogleScholarGoogle Scholar |
[11] (a) Selected recent reviews of benzyne, see: H. Pellissier, M. Santelli, Tetrahedron 2003, 59, 701.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmslCrsQ%3D%3D&md5=a21a9661b901c931c47aac588608f4bcCAS |
(b) H. H. Wenk, M. Winkler, W. Sander, Angew. Chem. Int. Ed. 2003, 42, 502.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. M. Dyke, A. J. Hester, G. C. Lloyd-Jones, Synthesis 2006, 4093.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. Bhunia, S. R. Yetra, A. T. Biju, Chem. Soc. Rev. 2012, 41, 3140.
| Crossref | GoogleScholarGoogle Scholar |
(e) P. M. Tadross, B. M. Stoltz, Chem. Rev. 2012, 112, 3550.
| Crossref | GoogleScholarGoogle Scholar |
[12] (a) For reported nucleophilic addition reactions of a fluoride ion to benzynes, see: A. A. Kolomeitsev, M. Vorobyev, H. Gillandt, Tetrahedron Lett. 2008, 49, 449.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVKgt7rN&md5=f15e334bba4506bd36fd2c26bf023dccCAS |
(b) V. V. Grushin, W. J. Marshall, Organometallics 2008, 27, 4825.
| Crossref | GoogleScholarGoogle Scholar |
(c) V. Diemer, J. S. Garcia, F. R. Leroux, F. Colobert, J. Fluor. Chem. 2012, 134, 146.
| Crossref | GoogleScholarGoogle Scholar |
[13] (a) For very recent papers on the synthesis of aryl fluoride through benzyne reactions, see: H. Yoshida, R. Yoshida, K. Takaki, Angew. Chem. Int. Ed. 2013, 52, 8629.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVGrsbnK&md5=5b11ce02b02f232780244e0708cf55c4CAS |
(b) K.-P. Wang, S. Y. Yun, P. Mamidipalli, D. Lee, Chem. Sci. 2013, 4, 3205.
| Crossref | GoogleScholarGoogle Scholar |
[14] For our recently reported one-pot benzyne preparation from 2-(trimethylsilyl)phenols using NfF, see: T. Ikawa, T. Nishiyama, T. Nosaki, A. Takagi, S. Akai, Org. Lett. 2011, 13, 1730.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivFyisLs%3D&md5=f71aeba3f378d89f1670753d6e7517e8CAS | 21391578PubMed |
[15] (a) For related mild benzyne generations from 2-(alkylsilyl)phenyl triflates, see: Y. Himeshima, T. Sonoda, H. Kobayashi, Chem. Lett. 1983, 12, 1211.
| Crossref | GoogleScholarGoogle Scholar |
(b) D. Peña, A. Cobas, D. Pérez, E. Guitián, Synthesis 2002, 1454.
| Crossref | GoogleScholarGoogle Scholar |
[16] (a) A. Cayley, Synlett 2007, 0339.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisVyrt7k%3D&md5=88007f144d8466a7c5b707564bf02dafCAS |
(b) C. J. Handy, Y.-F. Lam, P. DeShong, J. Org. Chem. 2000, 65, 3542.
| Crossref | GoogleScholarGoogle Scholar |
[17] (a) K. O. Christe, W. W. Wilson, R. D. Wilson, R. Bau, J. Feng, J. Am. Chem. Soc. 1990, 112, 7619.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlslWnt7c%3D&md5=11c9135602fb1bc0cbd8f45a8a9482f1CAS |
(b) R. D. Giacometti, Y. K. Ramtohul, Synlett 2009, 2010.
| Crossref | GoogleScholarGoogle Scholar |
(c) D. C. Rogness, R. C. Larock, Tetrahedron Lett. 2009, 50, 4003.
| Crossref | GoogleScholarGoogle Scholar |
[18] (a) I. Kuwajima, E. Nakamura, J. Am. Chem. Soc. 1975, 97, 3257.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXksFyhs78%3D&md5=df70b61205ba574d0b37fb2deb225abbCAS |
(b) R. A. Olofson, J. Cuomo, Tetrahedron Lett. 1980, 21, 819.
| Crossref | GoogleScholarGoogle Scholar |
[19] A 1.0 M THF solution of Bu4NF, which contained less than 5 wt-% of water (Bu4NF : H2O = 1 : ≤2.5), was purchased from Sigma-Aldrich Co. and used without further purifications.
[20] Our preparation of anhydrous Bu4NF according to the reported method failed: H. Sun, S. G. DiMagno, J. Am. Chem. Soc. 2005, 127, 2050.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXotVGgsQ%3D%3D&md5=2c2c572eaa4af6441ba7d816bba1abcbCAS | 15713075PubMed |
[21] D. W. Kim, H.-J. Jeong, S. T. Lim, M.-H. Sohn, Angew. Chem. Int. Ed. 2008, 47, 8404.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlKlsrzO&md5=33ce067819d33385f7e47fce740ef1d2CAS |
[22] The solvation of the fluoride ion by t-BuOH might make the nucleophile softer and the reaction between the fluoride ion and soft benzyne triple bonds should become faster than using normal Bu4NF.
[23] Bu4NF(t-BuOH)4 might be contaminated with a trace amount of water.
[24] (a) For selected regioselective nucleophilic additions to 3-substituted benzynes, see: Z. Liu, R. C. Larock, J. Org. Chem. 2006, 71, 3198.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XislOnsrc%3D&md5=ddcc3282ba6d59e1cb9136cc8367c0f3CAS | 16599619PubMed |
(b) T. Ikawa, T. Nishiyama, T. Shigeta, S. Mohri, S. Morita, S. Takayanagi, Y. Terauchi, Y. Morikawa, A. Takagi, Y. Ishikawa, S. Fujii, Y. Kita, S. Akai, Angew. Chem. Int. Ed. 2011, 50, 5674.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. M. Bronner, J. L. Mackey, K. N. Houk, N. K. Garg, J. Am. Chem. Soc. 2012, 134, 13966.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. Takagi, T. Ikawa, K. Saito, S. Masuda, T. Ito, S. Akai, Org. Biomol. Chem. 2013, 11, 8145.
| Crossref | GoogleScholarGoogle Scholar |
[25] (a) For selected papers on the regioselective cycloadditions of 3-silyl- and 3-borylbenzynes, see: T. Matsumoto, T. Sohma, S. Hatazaki, K. Suzuki, Synlett 1993, 843.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXisVCkurc%3D&md5=2c4ab7e0889cf0bc01e7eab57a4a1e67CAS |
(b) S. Akai, T. Ikawa, S. Takayanagi, Y. Morikawa, S. Mohri, M. Tsubakiyama, M. Egi, Y. Wada, Y. Kita, Angew. Chem. Int. Ed. 2008, 47, 7673.
| Crossref | GoogleScholarGoogle Scholar |
(c) T. Ikawa, A. Takagi, Y. Kurita, K. Saito, K. Azechi, M. Egi, K. Kakiguchi, Y. Kita, S. Akai, Angew. Chem. Int. Ed. 2010, 49, 5563.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. Takagi, T. Ikawa, Y. Kurita, K. Saito, K. Azechi, M. Egi, Y. Itoh, H. Tokiwa, Y. Kita, S. Akai, Tetrahedron 2013, 69, 4338.
| Crossref | GoogleScholarGoogle Scholar |
(e) T. Ikawa, A. Takagi, M. Goto, Y. Aoyama, Y. Ishikawa, Y. Itoh, S. Fujii, H. Tokiwa, S. Akai, J. Org. Chem. 2013, 78, 2965.
| Crossref | GoogleScholarGoogle Scholar |
[26] In the absence of 18-crown-6, the yield of fluorinated product 4a was 47 %, which is 13 % lower than that obtained under the standard conditions. In this one-pot reaction, caesium ions remain in the second benzyne generation step (Bu4NF(t-BuOH)4, 18-crown-6, 60°C, 1 h), and we have already found that the combination of Cs2CO3 and 18-crown-6 accelerated the generation of benzynes (see table 1 of Ref. [14]).
[27] (a) For recent theoretical and experimental studies on the regioselectivities of the reactions of 3-substituted benzynes, see: G-Y. J. Im, S. M. Bronner, A. E. Goetz, R. S. Paton, P. H.-Y. Cheong, K. N. Houk, N. K. Garg, J. Am. Chem. Soc. 2010, 132, 17933.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsV2gtrjJ&md5=63c29a6d33d5682adff417be5482aa2dCAS |
(b) T. Ikawa, H. Tokiwa, S. Akai, J. Synth. Org. Chem. Jpn. 2012, 70, 1123.
| Crossref | GoogleScholarGoogle Scholar |
[28] P. A. Clarke, S. Santos, W. H. C. Martin, Green Chem. 2007, 9, 438.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmslyqtro%3D&md5=0758b86d4f31af0cf717941f404f2c05CAS |