Simple Synthesis of New Mixed Isocyanide-NHC-Platinum(ii) Complexes and Their Catalytic Activity
Christoph Hubbert A , Marcus Breunig A , Kristen J. Carroll A , Frank Rominger A and A. Stephen K. Hashmi A BA Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.
B Corresponding author. Email: hashmi@hashmi.de
Australian Journal of Chemistry 67(3) 469-474 https://doi.org/10.1071/CH13546
Submitted: 10 October 2013 Accepted: 3 December 2013 Published: 23 January 2014
Abstract
Using the new modular and convergent approach to isocyanide-N-hetrocyclic carbene-platinum(ii) complexes, eight new compounds have been synthesised. For three of these, detailed structural data could be obtained by X-ray crystal structure analyses. This new family of organoplatinum complexes is catalytically active for hydrosilylation reactions; styrene and phenylacetylene could be used as substrates; triethylsilane and 1,1,1,3,5,5,5-heptamethyltrisiloxane could be used as reagents. With some of the new platinum pre-catalysts, excellent regioselectivities of up to 98 : 2 could be obtained, and turnover numbers up to 840 were achieved.
References
[1] F. Glorius, Top. Organomet. Chem. 2007, 21, 1.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhs1Whs7c%3D&md5=efb39dedbd23fd15871d8b2e85d8ea51CAS |
[2] (a) E. Aldeco-Perez, A. J. Rosenthal, B. Donnadieu, P. Parameswaran, G. Frenking, G. Bertrand, Science 2009, 326, 556.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1ymsrnJ&md5=f3420d5d827317625050e6aa1b15605eCAS | 19900893PubMed |
(b) For the first isolated carbene, see: G. R. Gillette, A. Baceiredo, G. Bertrand, Angew. Chem. Int. Ed. Engl. 1990, 29, 1429.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) W. A. Herrmann, C. Köcher, Angew. Chem. Int. Ed. Engl. 1997, 36, 2162.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnsVCrs7Y%3D&md5=6650daa7939ac8c155b315310f3c6f86CAS |
(b) For a review, see: W. A. Herrmann, Angew. Chem. Int. Ed. 2002, 41, 1290.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) M. Scholl, S. Ding, C. W. Lee, R. H. Grubbs, Org. Lett. 1999, 1, 953.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltVGgsbs%3D&md5=39ae7234fb567fdf6fdbfd59af43b81eCAS | 10823227PubMed |
(b) For a review, see: G. C. Vougioukalakis, R. H. Grubbs, Chem. Rev. 2010, 110, 1746.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) J. Huang, E. D. Stevens, S. P. Nolan, J. L. Petersen, J. Am. Chem. Soc. 1999, 121, 2674.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhs1elsbg%3D&md5=683aa216f31a1a3b1339007e4c72f06aCAS |
(b) For a review, see: S. Díez-González, N. Marion, S. P. Nolan, Chem. Rev. 2009, 109, 3612.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) C. J. O’Brien, E. A. B. Kantchev, N. Hadei, C. Valente, G. A. Chass, J. C. Nasielski, A. Lough, A. C. Hopkinson, M. G. Organ, Chemistry 2006, 12, 4743.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmtlyjsbc%3D&md5=382b0cbd8f325e2bbc4888504f2205f6CAS | 16568494PubMed |
(b) M. G. Organ, S. Avola, I. Dubovyk, N. Hadei, E. A. B. Kantchev, C. J. O’Brien, C. Valente, Chemistry 2006, 12, 4749.
| Crossref | GoogleScholarGoogle Scholar |
(c) For a review, see: E. A. B. Kantchev, C. J. O’Brien, M. G. Organ, Aldrichim Acta 2006, 39, 97.
[7] (a) G. Altenhoff, R. Goddard, C. W. Lehmann, F. Glorius, Angew. Chem. Int. Ed. 2003, 42, 3690.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmvFWkt70%3D&md5=65c939776e018362ccbe5f17f13a6af5CAS |
(b) For a review, see: T. Dröge, F. Glorius, Angew. Chem. Int. Ed. 2010, 49, 6940.
| Crossref | GoogleScholarGoogle Scholar |
[8] M. Mühlhofer, T. Strassner, W. A. Herrmann, Angew. Chem. Int. Ed. 2002, 41, 1745.
| Crossref | GoogleScholarGoogle Scholar |
[9] (a) A. Fürstner, L. Ackermann, B. Gabor, R. Goddard, C. W. Lehmann, R. Mynott, F. Stelzer, O. R. Thiel, Chemistry 2001, 7, 3236.
| Crossref | GoogleScholarGoogle Scholar | 11531110PubMed |
(b) A. Fürstner, M. Alcarazo, V. César, C. W. Lehmann, Chem. Commun. 2006, 2176.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. Fürstner, M. Alcarazo, K. Radkowski, C. W. Lehmann, Angew. Chem. Int. Ed. 2008, 47, 8302.
| Crossref | GoogleScholarGoogle Scholar |
[10] (a) H. Wakamatsu, S. Blechert, Angew. Chem. Int. Ed. 2002, 41, 794.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XisVahs70%3D&md5=c47e793f5085654c0eabf85f1be72c9fCAS |
(b) S. Tiede, A. Berger, D. Schlesiger, D. Rost, A. Lühl, S. Blechert, Angew. Chem. Int. Ed. 2010, 49, 3972.
| Crossref | GoogleScholarGoogle Scholar |
[11] (a) L. Mercs, M. Albrecht, Chem. Soc. Rev. 2010, 39, 1903.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsFersLo%3D&md5=8e195af6a3d6d8651f4d9ac6e499b84bCAS | 20502793PubMed |
(b) O. Schuster, L. Yang, H. G. Raubenheimer, M. Albrecht, Chem. Rev. 2009, 109, 3445.
| Crossref | GoogleScholarGoogle Scholar |
[12] (a) K. Grela, S. Harutyunyan, A. Michrowska, Angew. Chem. 2002, 114, 4210.
| Crossref | GoogleScholarGoogle Scholar |
(b) C. Samojłowicz, M. Bieniek, K. Grela, Chem. Rev. 2009, 109, 3708.
| Crossref | GoogleScholarGoogle Scholar |
[13] (a) S. Gründemann, A. Kovacevic, M. Albrecht, J. W. Faller, R. H. Crabtree, J. Am. Chem. Soc. 2002, 124, 10473.
| Crossref | GoogleScholarGoogle Scholar | 12197749PubMed |
(b) E. Peris, R. H. Crabtree, Coord. Chem. Rev. 2004, 248, 2239.
| Crossref | GoogleScholarGoogle Scholar |
[14] K. M. Hindi, M. J. Panzner, C. A. Tessier, C. L. Cannon, W. J. Youngs, Chem. Rev. 2009, 109, 3859.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotFKmsLg%3D&md5=896dc4ad4381d1566c310d1264e2b5d6CAS | 19580262PubMed |
[15] (a) J. Vignolle, T. D. Tilley, Chem. Commun. 2009, 7230.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVagsr%2FK&md5=72a4427ce1741d644585c76d2b2c0e25CAS |
(b) J. Chun, I. G. Jung, H. J. Kim, M. Park, M. S. Lah, S. U. Son, Inorg. Chem. 2009, 48, 6353.
| Crossref | GoogleScholarGoogle Scholar |
[16] A. Rit, T. Pape, F. E. Hahn, J. Am. Chem. Soc. 2010, 132, 4572.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtVyjsrc%3D&md5=72bd1258a5a0967d1732ab44b5c08ff0CAS | 20222710PubMed |
[17] (a) Y. Unger, D. Meyer, T. Strassner, Dalton Trans. 2010, 4295.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlt1CktLw%3D&md5=b193de53ad8168c7c70a99f54c5bc165CAS | 20422087PubMed |
(b) J. C. Y. Lin, R. T. W. Huang, C. S. Lee, A. Bhattacharyya, W. S. Hwang, I. J. B. Lin, Chem. Rev. 2009, 109, 3561.
| Crossref | GoogleScholarGoogle Scholar |
(c) K. A. M. Ampt, S. Burling, S. M. A. Donald, S. Douglas, S. B. Duckett, S. A. Macgregor, R. N. Perutz, M. K. Whittlesey, J. Am. Chem. Soc. 2006, 128, 7452.
| Crossref | GoogleScholarGoogle Scholar |
[18] R. T. W. Huang, W. C. Wang, R. Y. Yang, J. T. Lu, I. J. B. Lin, Dalton Trans. 2009, 7121.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVeksr3E&md5=6beaa857ea24c0e945b549567ffedcfaCAS |
[19] A. B. Powell, C. W. Bielawski, A. H. Cowley, J. Am. Chem. Soc. 2009, 131, 18232.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVOhtrzP&md5=eb03a935220d1afd56f6d9e2d59b821aCAS | 19938831PubMed |
[20] O. Schuster, L. Mercsa, M. Albrecht, Chimia 2010, 64, 184.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFSiu70%3D&md5=3d2bacf04574d332ffbb6e0ded0d58cdCAS | 21140917PubMed |
[21] (a) L. Mercs, M. Albrecht, Chem. Soc. Rev. 2010, 39, 1903.
| 1:CAS:528:DC%2BC3cXmsFersLo%3D&md5=8e195af6a3d6d8651f4d9ac6e499b84bCAS | 20502793PubMed |
(b) See also a recent editorial: W. D. Jones, J. Am. Chem. Soc. 2009, 131, 15075.
| Crossref | GoogleScholarGoogle Scholar |
[22] A. J. Arduengo, R. Krafczyk, R. Schmutzler, Tetrahedron 1999, 55, 14523.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnvFyjtbk%3D&md5=413ee38ddf75f1a4bd0c89e13a0611edCAS |
[23] B. A. B. Prasad, S. R. Gilbertson, Org. Lett. 2009, 11, 3710.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovVelt7k%3D&md5=c93981ee19de5f5c1f257f021331bf32CAS |
[24] (a) K. Bartel, W. P. Fehlhammer, Angew. Chem. Int. Ed. Engl. 1974, 13, 599.
| Crossref | GoogleScholarGoogle Scholar |
(b) U. Plaia, W. P. Fehlhammer, J. Am. Chem. Soc. 1985, 107, 2171.
| Crossref | GoogleScholarGoogle Scholar |
(c) B. Crociani, R. L. Richards, J. Chem. Soc., Dalton Trans. 1974, 693.
| Crossref | GoogleScholarGoogle Scholar |
(d) M. Tamm, F. E. Hahn, Coord. Chem. Rev. 1999, 182, 175.
| Crossref | GoogleScholarGoogle Scholar |
(e) R. A. Michelin, A. J. L. Pombeiro, M. F. C. Guedes da Silva, Coord. Chem. Rev. 2001, 218, 75.
| Crossref | GoogleScholarGoogle Scholar |
[25] (a) R. A. Michelin, L. Zanotto, D. Braga, P. Sabatino, R. J. Angelici, Inorg. Chem. 1988, 27, 85.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXjvVWisQ%3D%3D&md5=a11c1fc19420d7b2686eca55a5de5e31CAS |
(b) R. A. Michelin, L. Zanotto, D. Braga, P. Sabatino, R. J. Angelici, Inorg. Chem. 1988, 27, 93.
| Crossref | GoogleScholarGoogle Scholar |
[26] F. E. Hahn, M. C. Jahnke, Angew. Chem. Int. Ed. 2008, 47, 3132.
[27] A. S. K. Hashmi, C. Lothschütz, C. Böhling, T. Hengst, C. Hubbert, F. Rominger, Adv. Synth. Catal. 2010, 352, 3001.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVCjsLrN&md5=97fcd3d80073fe7488e9cc89740376dcCAS |
[28] (a) For related nucleophilic additions at gold(i)-isocyanide complexes, see: C. Bartolomé, Z. Ramiro, P. Perez-Galan, C. Bour, M. Raducan, A. M. Echavarren, P. Espinet, Inorg. Chem. 2008, 47, 11391.
| Crossref | GoogleScholarGoogle Scholar | 18947178PubMed |
(b) A. S. K. Hashmi, C. Lothschütz, R. Döpp, M. Rudolph, T. D. Ramamurthi, F. Rominger, Angew. Chem. Int. Ed. 2009, 48, 8243.
| Crossref | GoogleScholarGoogle Scholar |
(c) C. Bartolomé, Z. Ramiro, D. Garcia-Cuadrado, P. Perez-Galan, M. Raducan, C. Bour, A. M. Echavarren, P. Espinet, Organometallics 2010, 29, 951.
| Crossref | GoogleScholarGoogle Scholar |
(d) A. S. K. Hashmi, T. Hengst, C. Lothschütz, F. Rominger, Adv. Synth. Catal. 2010, 352, 1315.
| Crossref | GoogleScholarGoogle Scholar |
(e) A. S. K. Hashmi, M. Bührle, M. Wölfle, M. Rudolph, M. Wieteck, F. Rominger, W. Frey, Chem. Eur. J. 2010, 16, 9846.
| Crossref | GoogleScholarGoogle Scholar |
(f) For related application in synthesis of heterocyclic carbenes, see: A. S. K. Hashmi, C. Lothschütz, K. Graf, T. Häffner, A. Schuster, F. Rominger, Adv. Synth. Catal. 2011, 353, 1407.
| Crossref | GoogleScholarGoogle Scholar |
(g) A. S. K. Hashmi, D. Riedel, M. Rudolph, F. Rominger, T. Oeser, Chemistry 2012, 18, 3827.
| Crossref | GoogleScholarGoogle Scholar |
[29] For a related nucleophilic addition at PdII-isocyanide complexes, see, for example: Y. Han, H. Vinh Huynh, Dalton Trans. 2009, 2201.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivVWns74%3D&md5=bda51fae05520b52aa5ae67f45b738b2CAS | 19274299PubMed |
[30] A. S. K. Hashmi, C. Lothschütz, C. Böhling, F. Rominger, Organometallics 2011, 30, 2411.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvF2qs70%3D&md5=2e07b0fcd64677d33d0241f833faaec3CAS |
[31] S. Díez-González, N. Marion, S. P. Nolan, Chem. Rev. 2009, 109, 3612.
| Crossref | GoogleScholarGoogle Scholar | 19588961PubMed |
[32] B. D. Karstedt, US Patent 226928, 1972.
[33] J. L. Speier, J. A. Webster, G. H. Barnes, J. Am. Chem. Soc. 1957, 79, 974.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2sXltFyitA%3D%3D&md5=284b05d96ccc93714108edb136aa955cCAS |
[34] (a) S. Ahrens, T. Strassner, Inorg. Chim. Acta 2006, 359, 4789.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1WltbbN&md5=0ea7d9e945c380582285010c6d50b632CAS |
(b) V. Lillo, J. Mata, J. Ramírez, E. Peris, E. Fernandez, Organometallics 2006, 25, 5829.
| Crossref | GoogleScholarGoogle Scholar |
(c) M. Mühlhofer, T. Strassner, E. Herdtweck, W. A. Herrmann, J. Organomet. Chem. 2002, 660, 121.
| Crossref | GoogleScholarGoogle Scholar |
[35] (a) See for example: P. Steffanut, J. A. Osborn, A. De Cian, J. Fisher, Chemistry 1998, 4, 2008.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmvVOmtL8%3D&md5=2a3f248dd6b6d6505deb4729abd282adCAS |
(b) M. N. Jagadeesh, W. Thiel, J. Köhler, A. Fehn, Organometallics 2002, 21, 2076.
| Crossref | GoogleScholarGoogle Scholar |
(c) J. W. Sprengers, M. de Greef, M. A. Duin, C. J. Elsevier, Eur. J. Inorg. Chem. 2003, 3811.
| Crossref | GoogleScholarGoogle Scholar |
(d) J. W. Sprengers, M. J. Agerbeek, C. J. Elsevier, H. Kooijman, A. L. Spek, Organometallics 2004, 23, 3117.
| Crossref | GoogleScholarGoogle Scholar |
[36] M. P. Muñoz, M. Méndez, C. Nevado, D. J. Cárdenas, A. M. Echavarren, Synthesis 2003, 2898.
[37] (a) G. Altenhoff, R. Goddard, C. W. Lehmann, F. Glorius, Angew. Chem. Int. Ed. 2004, 126, 3690.
(b) G. Altenhoff, R. Goddard, C. W. Lehmann, F. Glorius, J. Am. Chem. Soc. 2004, 126, 15195.
| Crossref | GoogleScholarGoogle Scholar |
[38] (a) K. V. Luzyanin, A. J. L. Pombeiro, M. Haukka, V. Y. Kukushkin, Organometallics 2008, 27, 5379.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFGntr3P&md5=413852b6eff9bd592408b9a0d2449741CAS |
(b) K. V. Luzyanin, A. G. Tskhovrebov, M. C. Carias, M. F. C. Guedes da Silva, A. J. L. Pombeiro, V. Y. Kukushkin, Organometallics 2009, 28, 6559.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. G. Tskhovrebov, K. V. Luzyanin, M. L. Kuznetsov, V. N. Sorokoumov, I. A. Balova, M. Haukka, V. Y. Kukushkin, Organometallics 2011, 30, 863.
| Crossref | GoogleScholarGoogle Scholar |