Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Description of Bond Pseudorotation, Bond Pseudolibration, and Ring Pseudoinversion Processes Caused by the Pseudo-Jahn–Teller Effect: Fluoro Derivatives of the Cyclopropane Radical Cation

Wenli Zou A and Dieter Cremer A B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, Texas 75275-0314, USA.

B Corresponding author. Email: dieter.cremer@gmail.com

Australian Journal of Chemistry 67(3) 435-443 https://doi.org/10.1071/CH13480
Submitted: 11 September 2013  Accepted: 16 October 2013   Published: 28 November 2013

Abstract

Curvilinear coordinates are used to describe the molecular geometry and the pseudo-Jahn–Teller surface of F-substituted cyclopropane radical cations using the equation-of-motion coupled cluster EOMIP-CCSD/cc-pVTZ approach. The monofluoro derivative 2 undergoes bond pseudolibration (incomplete bond pseudorotation) between two symmetry-equivalent biradicaloid forms separated by a barrier of 2.2 kcal mol–1 (1 kcal mol–1 = 4.186 kJ mol–1) at low temperature. Bond pseudorotation and ring pseudoinversion have barriers of 12.1 and 16.5 kcal mol–1 respectively. The relative energies of 2 are affected by the distribution of the positive charge in the C3 ring and the formation of a CF bond with partial π character. There is a change of the CF bond length from 1.285 to 1.338 Å along the bond pseudorotation path. The changes of the CF bond outweigh the deformation effects of the C3 ring; however, both are a result of the pseudo-Jahn–Teller effect according to an (A′ + A′′) ⊗ (a′ + a′′) interaction. For the pentafluoro derivative 3 of the cyclopropane radical cation, bond pseudorotation has a barrier of 16.3 kcal mol–1 whereas ring pseudoinversion is hindered by a barrier of 21.7 kcal mol–1. Radical cation 3 is the first example of a trimethylene radical cation.


References

[1]  A. D. Liehr, J. Phys. Chem. 1963, 67, 389.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXjs1amtA%3D%3D&md5=369767dd7b54b29769fdf123b85e3fcdCAS |

[2]  A. D. Liehr, J. Phys. Chem. 1963, 67, 472.

[3]  I. B. Bersuker, The Jahn–Teller Effect 2006 (Cambridge University Press: Cambridge, UK).

[4]  I. B. Bersuker, Chem. Rev. 2013, 113, 1351.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXms1yisg%3D%3D&md5=733ee3c79912132bbe5cccf50c998e57CAS | 23301718PubMed |

[5]  D. Cremer, E. Kraka, K. J. Szabo, in The Chemistry of Functional Groups, The Chemistry of the Cyclopropyl Group (Ed. Z. Rappoport) 1995, Vol. 2, p. 43 (John Wiley: New York).

[6]  W. Zou, D. Izotov, D. Cremer, J. Phys. Chem. 2011, 115, 8731.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpt1Wmsrk%3D&md5=8bb7bdbaab1914bc8536e28c1fcac244CAS |

[7]  W. Zou, M. Filatov, D. Cremer, Int. J. Quantum Chem. 2012, 112, 3277.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtFantbs%3D&md5=5700d27cb71c584d98556939ec49e4c5CAS |

[8]  D. Cremer, D. Izotov, W. Zou, E. Kraka, RING, a Coordinate Transformation Program 2011 (Southern Methodist University: Dallas, TX).

[9]  E. Kraka, M. Filatov, W. Zou, J. Gräfenstein, D. Izotov, J. Gauss, Y. He, A. Wu, vs Polo, L. Olsson, Z. Konkoli, Z. He, D. Cremer, COLOGNE2013 2013 (Southern Methodist University: Dallas, TX).

[10]  A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisVWgtrw%3D&md5=f6cf3fb1eb0aa0bd90e09e70f7fe63aeCAS |

[11]  P. J. Stephens, F. J. Devlin, C. F. Chablowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmvVSitbY%3D&md5=e1e5e9babf6e7231adf55e499646050fCAS |

[12]  T. H. Dunning, J. Chem. Phys. 1989, 90, 1007.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXksVGmtrk%3D&md5=d4e9cc0e43c2e0f1a0ea5fbf96cf32b6CAS |

[13]  K. Raghavachari, G. W. Trucks, J. A. Pople, M. Head-Gordon, Chem. Phys. Lett. 1989, 157, 479.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXlsVSkt7s%3D&md5=31c3525050584429f9c0926524510c1fCAS |

[14]  P. G. Szalay, R. J. Bartlett, Chem. Phys. Lett. 1993, 214, 481.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmsl2ju7o%3D&md5=ba22d42df8cc680dd25340b88396f471CAS |

[15]  M. Nooijen, J. G. Snijders, Int. J. Quantum Chem. Quantum Chem. Symp. 1992, 26, 55.
         | 1:CAS:528:DyaK3sXoslOlsA%3D%3D&md5=21a786d294f7cd842aa07d13f4d69d42CAS |

[16]  M. Nooijen, J. G. Snijders, Int. J. Quantum Chem. 1993, 48, 15.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmtFWjt7o%3D&md5=658f32f981be2a7559c217045ecd6fffCAS |

[17]  J. F. Stanton, J. Gauss, J. Chem. Phys. 1994, 101, 8938.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjt1yitL8%3D&md5=e051310981b315ea5e74aa01a07a601aCAS |

[18]  J. F. Stanton, J. Gauss, M. E. Harding, P. G. Szalay, with contributions from A. A. Auer, R. J. Bartlett, U. Benedikt, C. Berger, D. E. Bernholdt, Y. J. Bomble, L. Cheng, O. Christiansen, M. Heckert, O. Heun, C. Huber, T.-C. Jagau, D. Jonsson, J. Jusélius, K. Klein, W. J. Lauderdale, D. A. Matthews, T. Metzroth, L. A. Mück, D. P. O′Neill, D. R. Price, E. Prochnow, C. Puzzarini, K. Ruud, F. Schiffmann, W. Schwalbach, S. Stopkowicz, A. Tajti, J. Vázquez, F. Wang, J. D. Watts, CFOUR, a Quantum Chemical Program Package 2010 (J. F. Stanton: Austin, TX). Available at http://www.cfour.de (accessed 14 November 2013).

[19]  H. J. Werner, P. J. Knowles, G. Kniza, F. R. Manby, M. Schütz, P. Celani, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklass, D. P. O′Neill, P. Palmieri, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang, A. Wolf, MOLPRO, Version 2010.1, a Package of Ab Initio Programs 2010 (H.-J. Werner: Stuttgart). Available at http://www.cfour.de (accessed 14 November 2013).

[20]  E. Kraka, D. Cremer, ChemPhysChem 2009, 10, 686.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvVSrsro%3D&md5=d6f7b75f50411cb1f21f28dc901c3cc1CAS | 19152353PubMed |

[21]  A. Wu, D. Cremer, J. Phys. Chem. A 2003, 107, 1797.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsVyns74%3D&md5=c543d2d59a4ffbea734b0ac0a2322606CAS |