Temperature-controlled Deposition of Copper(i) Oxide and Metallic Copper Nanostructures from Single-source Molecular Precursor
Muhammad Shahid A E , Muhammad Mazhar B E , Asif Ali Tahir C , Muhammad Khawar Rauf A and James Raftery DA Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan.
B Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.
C CEMPS – College of Engineering, Mathematics and Physical Science, Renewable Energy Research Group, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK.
D The School of Chemistry and School of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
E Corresponding authors. Email: shahid_chme@yahoo.com; mazhar42pk@yahoo.com
Australian Journal of Chemistry 67(5) 757-762 https://doi.org/10.1071/CH13472
Submitted: 20 September 2013 Accepted: 17 December 2013 Published: 13 February 2014
Abstract
A simple method of depositing morphology- and phase-tailored thin films of copper(i) oxide and metallic copper from [Cu(dmae)(TFA)]4·CH2Cl2 (1), where dmae is N,N-dimethylaminoethanolato and TFA is trifluoroacetato, on glass substrates by aerosol-assisted chemical vapour deposition is demonstrated. The tetrameric precursor 1 was synthesized and its structure was determined by single-crystal X-ray crystallography. Precursor 1 was applied for the deposition of nanostructured thin films of copper(i) oxide and copper nanowires at 250 and 375°C respectively. The deposited thin films were characterized by powder X-ray diffraction, field emission scanning electron microscopy, energy-dispersive X-ray diffraction, and ultraviolet–visible spectroscopy. The results indicate that the phase and morphology of the deposited material are strongly dependent on deposition temperature. UV-vis studies reveal that copper(i) oxide films with a band gap of 2.48 eV may find possible applications in tandem photoelectrochemical devices as light-absorbing material.
References
[1] G. Kear, B. D. Barker, F. C. Walsh, Corros. Sci. 2004, 46, 109.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXot1Gmurs%3D&md5=c31f9a717d367d15373f904e6b0a2116CAS |
[2] Y. Feng, W.-K. Teo, K.-S. Siow, K.-L. Tan, A.-K. Hsieh, Corros. Sci. 1996, 38, 387.
| Crossref | GoogleScholarGoogle Scholar |
[3] H. Mizubayashi, K. Fujita, K. Fujiwara, H. Tanimoto, J. Metastable Nanocrystalline Mater. 2005, 24–25, 61.
| Crossref | GoogleScholarGoogle Scholar |
[4] (a) M. T. S. Nair, L. Guerrero, O. L. Arenas, P. K. Nair, Appl. Surf. Sci. 1999, 150, 143.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlt1Wltrw%3D&md5=1b1edb9c722bbe140fbf81c8d234574bCAS |
(b) A. J. Nozik, Annu. Rev. Phys. Chem. 1978, 29, 189.
| Crossref | GoogleScholarGoogle Scholar |
(c) K. Akimoto, S. Ishizuka, M. Yanagita, Y. Nawa, G. K. Paul, T. Sakurai, Sol. Energy 2006, 80, 715.
| Crossref | GoogleScholarGoogle Scholar |
[5] (a) R. N. Briskman, Sol. Energy Mater. Sol. Cells 1992, 27, 361.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XmsFCrsbw%3D&md5=83ef1bee0378a96efc931fb63421bc69CAS |
(b) I. Grozdanov, Mater. Lett. 1994, 19, 281.
| Crossref | GoogleScholarGoogle Scholar |
[6] R. V. Kumar, Y. Diamant, A. Gedanken, Chem. Mater. 2000, 12, 2301.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXksleitrs%3D&md5=306901200bf2fe2726a103dfa6074d26CAS |
[7] C. H. Lo, T. T. Tsung, L. C. Chen, J. Cryst. Growth 2005, 277, 636.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtlGjsb8%3D&md5=497be771abb8aad0fcac7c145f7e9b7bCAS |
[8] Q. Pan, M. Wang, Z. Wang, Electrochem. Solid-State Lett. 2009, 12, A50.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotVGksQ%3D%3D&md5=8460c33f5930a4b3411c8e31299a0966CAS |
[9] H. Tong, Y. J. Zhu, L.-X. Yang, L. Li, L. Zhang, Angew. Chem. Int. Ed. 2006, 45, 7739.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht12rs7%2FP&md5=213d2e4af3fc8d94358b0e7adc978f89CAS |
[10] I. Lisiecki, H. Sack-Kongehl, K. Weiss, J. Urban, M. P. Pileni, Langmuir 2000, 16, 8807.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXms1amt70%3D&md5=84779980364acca728c20a3994b07090CAS |
[11] (a) C. Xu, Y. Liu, G. Xu, G. Wang, Mater. Res. Bull. 2002, 37, 2365.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XoslCitb8%3D&md5=08c1a5fb945a7aa0784aa08abbf5c47dCAS |
(b) X. Liu, R. Hu, S. Xiong, Y. Liu, L. Chai, K. Bao, Y. Qian, Mater. Chem. Phys. 2009, 114, 213.
| Crossref | GoogleScholarGoogle Scholar |
[12] J. Q. Qi, H. Y. Tian, L. T. Li, H. L. W. Chan, Nanoscale Res. Lett. 2007, 2, 107.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktVart7g%3D&md5=db5bde15ab547ad3a5592383929b2761CAS |
[13] J. Akhtar, M. Afzaal, M. A. Vincent, N. A. Burton, J. Raftery, I. H. Hillier, P. O’Brien, J. Phys. Chem. C 2011, 115, 16904.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpslWrtbc%3D&md5=ce1c4b49c4f5763467e169d1de080c4dCAS |
[14] (a) J. W. Park, H. S. Jang, M. Kim, K. Sung, S. S. Lee, T.-M. Chung, S. Koo, C. G. Kim, Y. Kim, Inorg. Chem. Commun. 2004, 7, 463.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitlyjtbs%3D&md5=a3ef3caa9628b0568d555b80f9b6398aCAS |
(b) L. C. Kalutarage, P. D. Martin, M. J. Heeg, C. H. Winter, J. Am. Chem. Soc. 2013, 135, 12588.
| Crossref | GoogleScholarGoogle Scholar |
[15] (a) S. H. Yoo, H. Choi, H.-S. Kim, B. K. Park, S. S. Lee, K.-S. An, Y. K. Lee, T.-K. Chung, C. G. Kim, Eur. J. Inorg. Chem. 2011, 1833.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktF2jtL0%3D&md5=3678651385733baa001f4b04b773b08fCAS |
(b) S. C. Goel, K. S. Kramer, M. Y. Chiang, W. E. Buhro, Polyhedron 1990, 9, 611.
(c) J. V. Singh, B. P. Baranwal, R. C. Mehrotra, Z. Anorg. Allg. Chem. 1981, 477, 235.
[16] (a) Y. Chi, P.-F. Hsu, C.-S. Liu, W.-L. Ching, T.-Y. Chou, A. J. Carty, S.-M. Peng, G.-H. Lee, S.-H. Chuang, J. Mater. Chem. 2002, 12, 3541.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptFSmt7g%3D&md5=8521b8b7ef96fb339c895299fbb39395CAS |
(b) M. Hamid, A. A. Tahir, M. Mazhar, M. Zeller, K. C. Molloy, A. D. Hunter, Inorg. Chem. 2006, 45, 10457.
| Crossref | GoogleScholarGoogle Scholar |
[17] J. Zhang, L. G. Hubert-Pfalzgraf, D. Luneau, Inorg. Chem. Commun. 2004, 7, 979.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmsVajtb0%3D&md5=f97470c5ccebced61724cf5cfac78092CAS |
[18] (a) M. Shahid, M. Mazhar, M. Hamid, P. O’ Brien, M. A. Malik, M. Helliwell, J. Raftery, Dalton Trans. 2009, 5487.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXot1Citr0%3D&md5=f523c739100ec8dc8a2db2add1a59307CAS | 19587992PubMed |
(b) K. L. Mittal, Electrocomp. Sci. Tech. 1976, 3, 21.
[19] R. Restori, D. Schwarzenbach, Acta Cryst. Sec. B Struct. Sci. 1986, 42, 201.
| Crossref | GoogleScholarGoogle Scholar |
[20] M. Shahid, M. Hamid, A. A. Tahir, M. Mazhar, M. A. Malik, M. Helliwell, Ind. Eng. Chem. Res. 2012, 51, 16361.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhslagu7bJ&md5=7cf8d8e7a12061f3bf2a446c7e03dd61CAS |
[21] K. Ramasamy, M. A. Malik, M. Helliwell, J. Raftery, P. O’Brien, Chem. Mater. 2011, 23, 1471.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhslGgs7o%3D&md5=e9e43292816b9d6820f2812325191147CAS |
[22] T. M. Dung Dang, T. T. Tuyet Le, E. F. Blanc, M. C. Dang, Adv. Nat. Sci.: Nanosci. Nanotechnol. 2011, 2, 015009.
[23] H. Chen, J.-H. Lee, Y.-H. Kim, D.-W. Shin, S.-C. Park, X. Meng, J.-B. Yoo, J. Nanosci. Nanotechnol. 2010, 10, 629.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjt1yitLo%3D&md5=898c2bd6e3ca3cc4630b0cb5053cf3e5CAS | 20352903PubMed |
[24] M. Shahid, M. Mazhar, M. Hamid, M. Zeller, P. O’Brien, M. A. Malik, J. Raftery, A. D. Hunter, New J. Chem. 2009, 33, 2241.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlWks7%2FE&md5=4c7a3bd9654c1c19fc18cf7103fe83a6CAS |
[25] G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112.
[26] (a) Bruker Advanced X-Ray Solutions SMART for WNT (Version 5.628) 2000 (Bruker AXS Inc.: Madison, WI).
(b) Bruker Advanced X-ray Solutions SHELXTL (Version 6.10) 2000 (Bruker AXS Inc.: Madison, WI).
[27] M. Shahid, M. Mazhar, P. O’ Brien, M. A. Malik, J. Raftery, Polyhedron 2009, 28, 807.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitFylur8%3D&md5=ae2b432115074e4c11d17151628a50b8CAS |