Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Improved Photocatalytic Activity of Copper Heterostructure Composites (Cu–Cu2O–CuO/AC) Prepared by Simple Carbothermal Reduction

Hongchao Ma A , Yifeng Liu A , Yinghuan Fu A B , Chunling Yu A , Xiaoli Dong A B , Xiufang Zhang A , Xinxin Zhang A and Wenping Xue A
+ Author Affiliations
- Author Affiliations

A School of Chemistry Engineering & Material, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjinzi District, Dalian 116034, China.

B Corresponding authors. Email: fuyinghuan@sina.com; Dongxl@dlpu.edu.cn

Australian Journal of Chemistry 67(5) 749-756 https://doi.org/10.1071/CH13456
Submitted: 31 August 2013  Accepted: 17 December 2013   Published: 30 January 2014

Abstract

Cu–Cu2O–CuO/activated carbon heterostructure composites with visible-light activity have been successfully synthesized by a simple carbothermal reduction procedure using CuSO4 as a single precursor. The resultant samples were characterized by X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy measurements. The results showed that the Cu–Cu2O–CuO composites with size less than 10 nm dispersed well on the surface of activated carbon. Activated carbon played both a reducing agent and support role in the formation of Cu–Cu2O–CuO/activated carbon heterostructure composites. X-ray photoelectron spectroscopy analysis suggests that the outside of the nanoparticles is CuO and the inside of the nanoparticles is Cu metal and Cu2O. Moreover, the composition of Cu–Cu2O–CuO/activated carbon composites can be tailored by varying the Cu loading, heat-treatment temperature, and heat-treatment time. The photocatalytic activities of the catalysts were investigated by degrading reactive brilliant blue KN-R under visible-light irradiation. The Cu–Cu2O–CuO/activated carbon heterostructure composites showed excellent photocatalytic activity compared with other catalysts (pure CuO, Cu2O, Cu2O/activated carbon, CuO/activated carbon, and Cu2O–CuO/activated carbon), which is ascribed to synergistic action between the activated carbon support and photoactive copper species, and the presence of interfacial structures such as a Cu2O/CuO heterostructure, Cu/Cu2O (or CuO) Schottky barrier, and Cu2O/Cu/CuO ohmic heterojunction.


References

[1]  S. Kakuta, T. Abe, Solid State Sci. 2009, 11, 1465.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptVakur4%3D&md5=82853f3f23055c537dfe4ff347c017e6CAS |

[2]  C. H. Kuo, C. H. Chen, M. H. Huang, Adv. Funct. Mater. 2007, 17, 3773.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotl2m&md5=5b2c09db19f868fe2af63798d13ea0b1CAS |

[3]  H. G. Zhang, Q. S. Zhu, Y. Zhang, Y. Wang, L. Zhao, B. Yu, Adv. Funct. Mater. 2007, 17, 2766.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1ygurvL&md5=3d8690a2ca1fb095dcf5172cb987ed85CAS |

[4]  K. E. R. Brown, K. S. Choi, Chem. Commun. 2006, 3311.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnvVSqsLk%3D&md5=7877d05a21f1c367063c84e471e32eacCAS |

[5]  B. X. Li, Y. Y. Wang, Y. F. Wang, Acta Phys. Chim. Sin. 2009, 25, 2366.
         | 1:CAS:528:DC%2BD1MXhsFaqs7rI&md5=f1b332f1576dc4b4023a982f3fba1244CAS |

[6]  P. Ameta, A. Kumar, R. Ameta, R. K. Malkani, Iran. J. Chem. Chem. Eng 2010, 29, 43.
         | 1:CAS:528:DC%2BC3MXjsFWgsL0%3D&md5=f5b9a42f59ca5316534a003dce2dc2d6CAS |

[7]  Q. Shao, X. J. Wang, S. S. Ge, L. Y. Wang, X. K. Yang, Chin. J. Inorg. Chem. 2012, 28, 1043.[in Chinese]
         | 1:CAS:528:DC%2BC38XotVOku70%3D&md5=932d25e998913a0aa977e963c6b2c5c5CAS |

[8]  W. Q. Zhang, L. Shi, K. B. Tang, S. M. Dou, Eur. J. Inorg. Chem. 2010, 1103.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  Z. K. Zheng, B. B. Huang, Z. Y. Wang, M. Guo, X. Y. Qin, X. Y. Zhang, P. Wang, Y. Dai, J. Phys. Chem. C 2009, 113, 14448.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotFKmsbs%3D&md5=f527eb60bdf79e3200a89ae9b642b8efCAS |

[10]  H. L. Xu, W. Z. Wang, W. Zhu, J. Phys. Chem. B 2006, 110, 13829.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtF2qs7g%3D&md5=83a7df969a62c8ebd6c21860fd1b14f0CAS |

[11]  Y. Hou, X. Y. Li, Q. D. Zhao, X. Quan, G. H. Chen, Appl. Phys. Lett. 2009, 95, 093108.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  Y. Hou, X. Li, X. Zou, X. Quan, G. Chen, Environ. Sci. Technol. 2009, 43, 858.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVyks7zL&md5=4e694532ded2ec01fa7fa9fc6e11776fCAS | 19245027PubMed |

[13]  C. A. N. Fernando, L. A. A. De Silva, R. M. Mehra, K. Takahashi, Semicond. Sci. Technol. 2001, 16, 433.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXks1Ghtrs%3D&md5=85149f15ab4ea4dec0d154b6d0661678CAS |

[14]  S. P. Xu, J. W. Ng, X. W. Zhang, H. W. Bai, D. D. L. Sun, Int. J. Hydrogen Energy 2010, 35, 5254.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsVensbc%3D&md5=ea18932ac5b5e4a27539be074bfb71f8CAS |

[15]  Z. H. Li, J. W. Liu, D. J. Wang, Y. Gao, J. Shen, Int. J. Hydrogen Energy 2012, 37, 6431.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisFeitbg%3D&md5=df57fd9f89f5a756ea970435319d1128CAS |

[16]  B. Zhou, H. X. Wang, Z. G. Liu, Y. Q. Yang, X. Q. Huang, Z. Lü, Y. Sui, W. H. Su, Mater. Chem. Phys. 2011, 126, 847.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXitFalsb4%3D&md5=dea2962f2e7b84a45046a2a91bbb0cfaCAS |

[17]  B. Zhou, Z. G. Liu, H. X. Wang, Y. Q. Yang, W. H. Su, Catal. Lett. 2009, 132, 75.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntlOgtrs%3D&md5=109cbdbd30e35b67faa12e8605596c96CAS |

[18]  L. Li, M. Zhang, J. Optoelectron. Adv. Mater. 2011, 13, 719.
         | 1:CAS:528:DC%2BC3MXhtVens7nE&md5=e44ac0f470f51ccda1d9621dfbd6b939CAS |

[19]  Z. Huang, Y. Y. Li, T. F. Long, M. L. Chen, X. C. He, Mod. Chem. Ind. 2010, 30, 57.[in Chinese]

[20]  M. R. Chen, J. Y. Chen, W. R. Zhang, J. Zhang, J. S. Sun, J. Wuhan Inst. Tech. 2009, 31, 28.[in Chinese]
         | 1:CAS:528:DC%2BC3cXltFems7o%3D&md5=21b512da8fe5af79738793eb587e09a1CAS |

[21]  A. P. L. Batista, H. W. P. Carvalho, G. H. P. Luz, P. F. Q. Martins, M. Galves, L. C. A. Oliveira, Environ. Chem. Lett. 2010, 8, 63.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Kmtbk%3D&md5=165e9c899bf7b5024663e40e35f96314CAS |

[22]  H. C. Ma, K. Teng, Y. H. Fu, Y. Song, Y. W. Wang, X. L. Dong, Energy Environ. Sci. 2011, 4, 3067.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFSrs7bE&md5=26080bffae56d65575e86f878bf6fe11CAS |

[23]  H. C. Ma, J. H. Han, Y. H. Fu, Y. Song, C. L. Yu, X. L. Dong, Appl. Catal. B 2011, 102, 417.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFyiu74%3D&md5=50e806e5fbb207f8f4bb883d587c27adCAS |

[24]  A. Kudo, Y. Miseki, Chem. Soc. Rev. 2009, 38, 253.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFWjtL3P&md5=4b8eb9813bda580b0d1b34d660e243fbCAS | 19088977PubMed |

[25]  A. Z. Moshfegh, J. Phys. D Appl. Phys. 2009, 42, 233001.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  V. Chhabra, V. Pillai, B. K. Mishra, A. Morrone, D. O. Shah, Langmuir 1995, 11, 3307.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnslKitbc%3D&md5=6d8b223454d067bc4caa3505041675efCAS |

[27]  J. Morales, L. Sànchez, S. Bijani, L. Martínez, M. Gabás, J. R. Ramos-Barrado, Electrochem. Solid-State Lett. 2005, 8, A159.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXis1Wjt74%3D&md5=6f06a7cbaf39ba9b955a9eac445ac149CAS |

[28]  S. Bijani, M. Gabás, L. Martínez, J. R. Ramos-Barrado, J. Morales, L. Sànchez, Thin Solid Films 2007, 515, 5505.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvFaku7Y%3D&md5=5ee9aac1469576a0fcc4bcf122925c2aCAS |

[29]  M. Kaur, P. Muthe, S. K. Despande, S. Choudhury, J. B. Singh, N. Verma, S. K. Gupta, J. V. Yakhami, J. Cryst. Growth 2006, 289, 670.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xit1ensL4%3D&md5=50109f8ac562a5d6b56925ae48184ab3CAS |

[30]  U. S. Chen, Y. L. Chueh, S. H. Lai, L. J. Chou, H. S. Shih, J. Vac. Sci. Technol. B 2006, 24, 139.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlOhur8%3D&md5=a2cb2ac0e846fdf3bb6618dd060aadcaCAS |

[31]  L. Armelao, D. Barreca, G. Bottaro, G. Mattei, C. Sada, E. Tondello, Chem. Mater. 2005, 17, 1450.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtl2jsL4%3D&md5=476d08da1a1cc64b20e435b5dba1da46CAS |

[32]  T. Ghodselahi, M. A. Vesaghi, A. Shafiekhani, A. Baghizadeh, M. Lameii, Appl. Surf. Sci. 2008, 255, 2730.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVCiu7fL&md5=d114bd823efe0b0c4f82de1ff5c4067eCAS |

[33]  T. Du, D. Tamboli, V. Desai, S. Seal, J. Electrochem. Soc. 2004, 151, G230.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitFSlsb8%3D&md5=d2fd680934f23ffba168a365b1b231d1CAS |

[34]  W. Z. Jia, E. Reitz, H. Sun, B. K. Li, H. Zhang, Y. Lei, J. Appl. Phys. 2009, 105, 064917.
         | Crossref | GoogleScholarGoogle Scholar |

[35]  J. Ghijsen, L. H. Tjeng, J. van Elp, H. Eskes, J. Westerink, G. A. Sawatzky, M. T. Czyzyk, Phys. Rev. B 1988, 38, 11322.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhtVChtbs%3D&md5=10f8688ab4a00331896f8901d7a818c9CAS |

[36]  J. Y. Park, Y. S. Jung, J. Cho, W. K. Choi, Appl. Surf. Sci. 2006, 252, 5877.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltlGktrk%3D&md5=fef4dba8bfe3fca5a6046bc125912251CAS |

[37]  H. G. Kim, P. H. Borse, W. Choi, J. S. Lee, Angew. Chem. Int. Ed. 2005, 44, 4585.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntVSgtrc%3D&md5=67af094f3d1b330d6e82c0c8735af451CAS |

[38]  B. Tryba, A. W. Morawski, M. Inagaki, Appl. Catal. B 2003, 41, 427.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitV2nsrc%3D&md5=7991bc292794dca021369dc26b0ca5bfCAS |

[39]  Y. Li, S. Zhang, Q. Yu, W. Yin, Appl. Surf. Sci. 2007, 253, 9254.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvVemu78%3D&md5=d2633da304983159e37f5a0060474a90CAS |

[40]  S. X. Liu, X. Y. Chen, X. Chen, J. Hazard. Mater. 2007, 143, 257.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktFyjsL4%3D&md5=648dcc6580d4a64655d9d35092565862CAS | 17049160PubMed |

[41]  X. Zhang, M. Zhou, L. Lei, Carbon 2005, 43, 1700.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltFGrtLs%3D&md5=eaa5f58bb9ed04fce3df3810b4e1991cCAS |

[42]  J. Matos, J. Laine, J. M. Herrmann, J. Catal. 2001, 200, 10.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtVGlsrg%3D&md5=5d77978eaaa64ee5e19344155b75f77eCAS |

[43]  D. K. Lee, S. C. Kim, S. J. Kim, I. S. Chung, S. W. Kim, Chem. Eng. J. 2004, 102, 93.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltVWgurc%3D&md5=8b7164b0c862c7d85174c338af5391deCAS |

[44]  S. L. Wang, P. G. Li, H. W. Zhu, W. H. Tang, Powder Technol. 2012, 230, 48.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1ajtb7N&md5=3c803ee377d0d5d1983ab6b5aa120adfCAS |

[45]  W. Zhao, K. H. Wong, Ch. Hu, J. C. Yu, C. Y. Chan, T. Qi, P. K. Wong, Appl. Surf. Sci. 2012, 258, 5955.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksVyju7g%3D&md5=ba1105312f4d630e7350a91cc8010f8bCAS |