Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Boric Acid Catalyzed Methyl Esterification of Sugar Acids

Stephan M. Levonis A , Brighid B. Pappin A , Alissa Sharp A , Milton J. Kiefel A B and Todd A. Houston A B
+ Author Affiliations
- Author Affiliations

A Institute for Glycomics and School of Biomolecular and Physical Sciences, Gold Coast Campus, Griffith University, Qld 4222, Australia.

B Corresponding authors. Email: M.Kiefel@griffith.edu.au; T.Houston@griffith.edu.au

Australian Journal of Chemistry 67(3) 528-530 https://doi.org/10.1071/CH13459
Submitted: 31 August 2013  Accepted: 3 December 2013   Published: 18 December 2013

Abstract

Boric acid catalyzes methyl esterification of certain sugar acids (sialic acid, deaminated neuraminic acid) and related natural products (quinic acid) quite cleanly in some cases. However, closely related sugar acids (glucuronic acid, 3-deoxy-d-manno-oct-2-ulosonic acid) failed to esterify under the same conditions. Factors governing this dichotomy are discussed.


References

[1]     (a) CRC Handbook for Chemistry and Physics, 65th edn (Ed. R. C. Weast) 1984 (CRC Press: Boca Raton, FL).
      (b) T. A. Houston, Aust. J. Chem. 2011, 64, 1415.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) P. Nelson, A. Pelter, J. Chem. Soc. 1965, 5142.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXkvVSntbc%3D&md5=b731f2a869c665995cfc6822caa3f79eCAS |
      (b) D. B. Collum, S.-C. Chen, B. Ganem, J. Org. Chem. 1978, 43, 4393.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) K. Ishihara, S. Ohara, H. Yamamoto, J. Org. Chem. 1996, 61, 4196.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) K. Arnold, B. Davies, R. L. Giles, C. Grosjean, G. E. Smith, A. Whiting, Adv. Synth. Catal. 2006, 348, 813.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) T. Maki, K. Ishihara, H. Yamamoto, Tetrahedron 2007, 63, 8645.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) R. M. Al-Zoubi, O. Marion, D. G. Hall, Angew. Chem. Int. Ed. 2008, 47, 2876.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) H. Charville, D. Jackson, G. Hodges, A. Whiting, Chem. Commun. 2010, 46, 1813.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) N. Gernigon, R. M. Al-Zouby, D. G. Hall, J. Org. Chem. 2012, 77, 8386.and references therein.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) W. W. Lawrence, Tetrahedron Lett. 1971, 12, 3453.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) Y. Mansoori, F. S. Tataroglu, M. Sadaghian, Green Chem. 2005, 7, 870.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) T. A. Houston, S. M. Levonis, M. J. Kiefel, Aust. J. Chem. 2007, 60, 811.and references therein.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  T. A. Houston, B. L. Wilkinson, J. T. Blanchfield, Org. Lett. 2004, 6, 679.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVyltbc%3D&md5=40e5470252f603906f496ac08234ffaaCAS | 14986948PubMed |

[5]  T. Maki, K. Ishihara, H. Yamamoto, Org. Lett. 2005, 7, 5047.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVKhsbzK&md5=433d4877bdb974f22ae443dc4a73d8e4CAS | 16235954PubMed |

[6]  S. M. Levonis, L. F. Bornaghi, T. A. Houston, Aust. J. Chem. 2007, 60, 821.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1yisLfL&md5=7b7589e15867e12d9223501be770a328CAS |

[7]  Prolonged heating of the KDN reaction at 50°C resulted in the appearance of a second product, presumably the methyl glycoside of the methyl ester.

[8]  (a) S. Solomon, C. Hur, A. Lee, K. Smith, J. Chem. Educ. 1996, 73, 173.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhsVyrsL0%3D&md5=4a392c0485706e233506d7b88ee9f6c5CAS |
      (b) S. M. Levonis, M. J. Kiefel, T. A. Houston, P. C. Healy, Acta Crystallogr. E 2010, E66, o226.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  R. Winzar, J. Philips, M. J. Kiefel, Synlett 2010, 583.
         | 1:CAS:528:DC%2BC3cXktFKksL4%3D&md5=65ba9896f1717a111ed6b64a08630ffdCAS |

[10]  (a) S. M. Levonis, M. J. Kiefel, T. A. Houston, Chem. Commun. 2009, 2278.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkslGktbc%3D&md5=d580061c8c20de3be61aae7b8bb912d5CAS |
      (b) S. M. Levonis, M. J. Kiefel, T. A. Houston, Aust. J. Chem. 2011, 64, 1415.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  A. Malapelle, A. Coslovi, G. Doisneau, J.-M. Beau, Eur. J. Org. Chem. 2007, 3145.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXns12ktr4%3D&md5=3349965fdbc4d10bf1258cd75fdec598CAS |

[12]  M. G. Banwell, N. L. Hungerford, K. A. Jolliffe, Org. Lett. 2004, 6, 2737.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsF2mu70%3D&md5=056e7c6f8b01cbaef60d1a325aefcc91CAS | 15281757PubMed |