Temperature-Responsive Self-Assemblies of ‘Kinked’ Amphiphiles
Jennifer S. Squire A , Grégory Durand B C , Lynne Waddington D , Alessandra Sutti E and Luke C. Henderson A E FA Strategic Research Centre for Chemistry and Biotechnology, Deakin University, Pigdons Road, Waurn Ponds Campus, Geelong, Vic. 3216, Australia.
B Unité Mixte de Recherche 5247, Centre National de la Recherche Scientifique and Universités de Montpellier 1&2, Institut des Biomolécules Max Mousseron, Faculté de Pharmacie, 15 avenue Charles Flahault, F-34093 Montpellier Cedex 05, France.
C Université d'Avignon et des Pays de Vaucluse, Equipe Chimie Bioorganique et Systèmes Amphiphiles, 33 rue Louis Pasteur, F-84000 Avignon, France.
D CSIRO Materials Science and Engineering, Bayview Avenue, Clayton, Vic. 3168, Australia.
E Institute for Frontier Materials, Deakin University, Pigdons Road, Waurn Ponds Campus, Geelong, Vic. 3216, Australia.
F Corresponding author. Email: luke.henderson@deakin.edu.au
Australian Journal of Chemistry 66(8) 899-909 https://doi.org/10.1071/CH13278
Submitted: 31 May 2013 Accepted: 16 July 2013 Published: 7 August 2013
Abstract
The synthesis of novel norbornane-based amphiphiles and the thermal response of their corresponding colloids is presented. It was found that the hydrodynamic diameter (DH) expansion or contraction of 1–4 in response to increasing temperature was governed by the length of the hydrophobic region possessed by the amphiphile (a 12 or 16 carbon chain). These data were used as a starting point to extend into an active tumour targeting system whereby two amphiphiles were modified to incorporate the oestrogen receptor antagonist Tamoxifen at the polar head group. This was achieved by a triazole moiety while both the C12 (18) or C16 (19) hydrophobic chains were incorporated as the hydrophobic region in an attempt to retain the response to thermal stimuli observed in our preliminary findings. These functionalised novel amphiphiles possessed critical aggregation concentration values of 510 and 19 µM, while aqueous self-assemblies of 56 and 106 nm for 18 and 19 were observed. Imaging by cryogenic transmission electron microscopy showed 18 to possess liposomal morphology, while 19, bearing a C16 hydrophobic portion, formed non-defined amorphous aggregates. Finally, the response to temperature of these assemblies was investigated with only the C12 variant 18 displaying a temperature response in the 5–55°C thermal window investigated.
References
[1] J. Buse, A. El-Aneed, Nanomedicine 2010, 5, 1237.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlOhtrzN&md5=3ef5f0391a3cdc54500d5c93aebab313CAS | 21039200PubMed |
[2] C. Byrne, F. Sallas, D. K. Rai, J. Ogier, R. Darcy, Org. Biomol. Chem. 2009, 7, 3763.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVGgsLrE&md5=9ce543f5c2f164957597a9e2a48d0c19CAS | 19707681PubMed |
[3] R. K. Tekade, P. V. Kumar, N. K. Jain, Chem. Rev. 2009, 109, 49.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFantbnI&md5=64b62dcd37e37a880f4657b460c8cbc7CAS | 19099452PubMed |
[4] G. Sahay, D. Y. Alakhova, A. V. Kabanov, J. Controlled Release 2010, 145, 182.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosF2ntbY%3D&md5=156616746cdcbe78df2883b52938bfe2CAS |
[5] Z. Gao, L. Zhang, Y. Sun, J. Controlled Release 2012, 162, 45.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFCltrjP&md5=5c156910d1e189d5b047a3b043a2ac2bCAS |
[6] H. Kaya-Celiker, K. Mallikarjunan, Food Eng. Rev. 2012, 4, 114.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xms12gtL0%3D&md5=df59b7ab5efa670ef3941c6cc5aa65bfCAS |
[7] M. J. Joralemon, S. McRae, T. Emrick, Chem. Commun. 2010, 46, 1377.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFyhtb0%3D&md5=3f1bea54b4bf12d0445fa14259806d25CAS |
[8] H. Maeda, J. Wu, T. Sawa, Y. Matsumura, K. Hori, J. Controlled Release 2000, 65, 271.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtl2qsLo%3D&md5=9961104c6de89bfcb637cd07a75b5267CAS |
[9] M. A. Mintzer, E. E. Simanek, Chem. Rev. 2009, 109, 259.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVOjsL3L&md5=a74701fc0bfe879f60f6f71e6ef9f135CAS | 19053809PubMed |
[10] S. Bhattacharya, A. Bajaj, Chem. Commun. 2009, 45, 4632.
| Crossref | GoogleScholarGoogle Scholar |
[11] M. de Smet, S. Langereis, S. van den Bosch, H. Grüll, J. Controlled Release 2010, 143, 120.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtFOju70%3D&md5=bf0e372676efd21d882a264397f941daCAS |
[12] X. Liang, X. Yue, Z. Dai, J. Kikuchi, Chem. Commun. 2011, 47, 4751.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktF2nt7c%3D&md5=524fd675c09ae0bd9b2c61ae38d420ecCAS |
[13] H. Wu, J. Dong, C. Li, Y. Liu, N. Feng, L. Xu, X. Zhan, H. Yang, G. Wang, Chem. Commun. 2013, 49, 3516.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltVOrsLs%3D&md5=4ec79e5ead9a1c0502a274313c021d6aCAS |
[14] W. Agut, A. Brulet, C. Schatz, D. Taton, S. Lecommandoux, Langmuir 2010, 26, 10546.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsVGit70%3D&md5=b39e26b5c2cdbaae1bc6602acec73fdcCAS | 20491497PubMed |
[15] (a) D.-L. Liu, X. Chang, C.-M. Dong, Chem. Commun. 2013, 49, 1229.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnslShsQ%3D%3D&md5=3cc3ee9d79943a98b651a0a47ed2819dCAS |
(b) V. P. Torchilin, Nat. Rev. Drug Discov. 2005, 4, 145.
| Crossref | GoogleScholarGoogle Scholar |
[16] C. D. Landon, J.-Y. Park, D. Needham, M. W. Dewhirst, The Open Nanomedicine Journal 2011, 3, 38.
| Crossref | GoogleScholarGoogle Scholar | 23807899PubMed |
[17] M. L. Immordino, F. Dosio, L. Cattel, Int. J. Nanomedicine 2006, 1, 297.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhtlantb7E&md5=db196965e2aa8bda4dece2b2c5774198CAS | 17717971PubMed |
[18] T. M. Allen, P. R. Cullis, Science 2004, 303, 1818.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitFehu70%3D&md5=54e647e2b47505cef70965ccc8cc84ccCAS | 15031496PubMed |
[19] V. P. Torchilin, Nat. Rev. Drug Discov. 2005, 4, 145.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpt1WlsA%3D%3D&md5=d33ec8d9a36851d2a1c3ad4d1a1c3242CAS | 15688077PubMed |
[20] G. A. Koning, A. M. Eggermont, L. H. Lindner, T. L. M. ten Hagen, Pharm. Res. 2010, 27, 1750.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlt1OlsLo%3D&md5=3e7e8c3f6862b793152929da8988978fCAS | 20424894PubMed |
[21] J. Fang, H. Nakamura, H. Maeda, Adv. Drug Deliv. Rev. 2011, 63, 136.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktF2jur8%3D&md5=04ac28b488d88817f2a6dee928dc6569CAS | 20441782PubMed |
[22] K. Maruyama, Adv. Drug Deliv. Rev. 2011, 63, 161.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktF2jur0%3D&md5=b2f3bab79c0a1512d953b84a5e3ee04fCAS | 20869415PubMed |
[23] S. Acharya, S. K. Sahoo, Adv. Drug Deliv. Rev. 2011, 63, 170.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktF2juro%3D&md5=3fca60f64561532806f75d1768048580CAS | 20965219PubMed |
[24] H. Maeda, J. Wua, T. Sawa, Y. Matsumura, K. Horic, J. Control. Release 2000, 65, 271.
| 1:CAS:528:DC%2BD3cXhtl2qsLo%3D&md5=9961104c6de89bfcb637cd07a75b5267CAS | 10699287PubMed |
[25] B. S. Reddy, R. Banerjee, Angew. Chem. Int. Ed. 2005, 44, 6723.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1SnsLfJ&md5=78ac6da590cc81ce5c2b6b8f9265449fCAS |
[26] J. S. Squire, A. Sutti, G. Durand, X. A. Conlan, L. C. Henderson, New J. Chem. 2013, 37, 1895.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpsFahsr0%3D&md5=acf3d2710ce3e8004e01def3e01f3c14CAS |
[27] T. Barclay, K. Constantopoulos, J. Matisons, J. Mater. Res. 2011, 26, 322.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltFGgsLg%3D&md5=8fd7421d3fda302984f64f8985bad86dCAS |
[28] (a) T. Ta, A. J. Convertine, C. R. Reyes, P. S. Stayton, T. M. Porter, Biomacromolecules 2010, 11, 1915.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovVCisbw%3D&md5=e1cfb0e84967f170a000cd8e972493f8CAS | 20690704PubMed |
(b) B. M. Dicheva, T. L. M. ten Hagen, L. Li, D. Schipper, A. L. B. Seynhaeve, G. C. van Rhoon, A. M. M. Eggermont, L. H. Lindner, G. A. Koning, Nano Lett. 2013, 13, 2324.
| Crossref | GoogleScholarGoogle Scholar |
(c) K. Djanashvili, T. L. M. ten Hagen, R. Blangé, D. Schipper, J. A. Peters, G. A. Koning, Bioorg. Med. Chem. 2011, 19, 1123.
| Crossref | GoogleScholarGoogle Scholar |
[29] A. Mukherjee, T. K. Prasad, N. M. Rao, R. Banerjee, J. Biol. Chem. 2005, 280, 15619.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtleisr4%3D&md5=4ef2020d2ea4c83987562eb4158e207aCAS | 15695518PubMed |
[30] G. Zuber, L. Zammut-Italiano, E. Dauty, J.-P. Behr, Angew. Chem. Int. Ed. 2003, 42, 2666.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltFekt7w%3D&md5=f3b3f015a16b3284d7f05e77273ac7f5CAS |
[31] V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew. Chem. Int. Ed. 2002, 41, 2596.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xls1Ohsr4%3D&md5=a7cb70cd3e268b3421cca3b9b998eff4CAS |
[32] F. Himo, T. Lovell, R. Hilgraf, V. V. Rostovtsev, L. Noodleman, K. B. Sharpless, V. V. Fokin, J. Am. Chem. Soc. 2005, 127, 210.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVKrsrfO&md5=7e462718e399444aca7abc00882ea689CAS | 15631470PubMed |
[33] (a) S. C. Semple, A. Akinc, J. Chen, A. P. Sandhu, B. L. Mui, C. K. Cho, D. W. Sah, D. Stebbing, E. J. Crosley, E. Yaworski, I. M. Hafez, J. R. Dorkin, J. Qin, K. Lam, K. G. Rajeev, K. F. Wong, J. B. Jeffs, L. Nechev, M. L. Eisenhardt, M. Jayaraman, M. Kazem, M. A. Maier, M. Srinivasulu, M. J. Weinstein, Q. Chen, R. Alvarez, S. A. Barros, S. De, S. K. Klimuk, T. Borland, V. Kosovrasti, W. L. Cantley, Y. K. Tam, M. Manoharan, M. A. Ciufolini, M. A. Tracy, A. de Fougerolles, I. MacLachlan, P. R. Cullis, T. D. Madden, M. J. Hope, Nat. Biotechnol. 2010, 28, 172.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntVCqtg%3D%3D&md5=e466c2c0c101353b6db80ac4eb33fbfaCAS | 20081866PubMed |
(b) N. Taib, A. Aimé, L. Moreau, M. Camplo, S. Houmadi, B. Desbat, M. Laguerre, M. W. Grinstaff, I. Bestel, P. Barthélémy, J. Colloid Interface Sci. 2012, 377, 122.
| Crossref | GoogleScholarGoogle Scholar |
[34] E. C. Dreaden, S. C. Mwakwari, Q. H. Sodji, A. K. Oyelere, M. A. El-Sayed, Bioconjug. Chem. 2009, 20, 2247.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsValtLfL&md5=d4c03ba649ff93f7ea6399da877a61b3CAS | 19919059PubMed |
[35] Refer to Supplementary Material.
[36] A. Domínguez, A. Fernández, N. González, E. Iglesias, L. Montenegro, J. Chem. Educ. 1997, 74, 1227.
| Crossref | GoogleScholarGoogle Scholar |
[37] M. Bielawska, A. Chodzinska, B. Janczuk, A. Zdziennicka, Colloids Surf. A 2013, 424, 81.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXkvF2qu74%3D&md5=5ce2742d5a2e488fd0384a0c553e2e41CAS |
[38] R. Sharma, S. Mahajan, R. K. Mahajan, Colloids Surf. A 2013, 427, 62.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmslemt70%3D&md5=b9eb0680e142f111608396c9c09aa786CAS |
[39] T. Asakawa, M. Mouri, S. Miyagishi, M. Nishida, Langmuir 1989, 5, 343.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXht1Wqs7c%3D&md5=f6e695123c9faf12a41f8d1fa8fb99f4CAS |
[40] M. J. Rosen, Surfactants and Interfacial Phenomena 2004, 3rd edn, Ch. 4, p. 121 (John Wiley & Sons: Hoboken, NJ).
[41] P. van Rijn, D. Janeliunas, A. M. Brizard, M. C. A. Stuart, G. J. M. Koper, R. Eelkema, J. H. van Esch, New J. Chem. 2011, 35, 558.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFKis74%3D&md5=10e70fa84ed9e360a1dfc1af65c19bb0CAS |
[42] R. Bordes, M. Vedrenne, Y. Coppel, S. Franceschi, E. Perez, I. Rico-Lattes, ChemPhysChem 2007, 8, 2013.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFahsrnF&md5=09f1603a7f1dc91fd9b42ad86bc69900CAS | 17661325PubMed |
[43] R. Bordes, K. Rbii, A. Gonzalez-Perez, S. Franceschi-Messant, E. Perez, I. Rico-Lattes, Langmuir 2007, 23, 7526.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlvFegsbw%3D&md5=5aff4bf1001c5d3ac6379ec6a2808f66CAS | 17539666PubMed |