Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Theoretical Studies for Ozonide Formation During the Ozonolysis of Bicyclic Endoperoxides

Nicole M. Cain A B , Josh L. Hixson A and Dennis K. Taylor A C
+ Author Affiliations
- Author Affiliations

A School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA 5064, Australia.

B Current address: Department of Environment and Primary Industries (DEPI), Ernest Jones Drive, Macleod, Vic. 3085, Australia.

C Corresponding author. Email: dennis.taylor@adelaide.edu.au

Australian Journal of Chemistry 66(8) 891-898 https://doi.org/10.1071/CH13277
Submitted: 31 May 2013  Accepted: 16 July 2013   Published: 6 August 2013

Abstract

Theoretical investigations on the treatment of bicyclic endoperoxides (1,2-dioxines) with ozone at the HF/6–31G*, MP2/6–31G* or 6–311G*, and DFT(B3LYP)/6–31G* levels of theory indicate that the estimated activation energies for formation of the possible endo-endo, endo-exo, exo-endo, or exo-exo transition states along with the formation of the primary ozonides and product ozonides are very sensitive to effects of electron correlation and basis set. This study suggests that MP2/6–311G* is the best level of theory for evaluating such systems. At the MP2/6–311G* level of theory it was found that the transition state for primary ozonide formation was lowest in energy when ozone approaches in an endo facial fashion with a further 3 kJ mol–1 stabilisation seen when the central oxygen within the primary ozonide protrudes outwards (exo) as opposed to inwards (endo). The product ozonides are predicted to be more stable than the combined starting materials by some 380–580 kJ mol–1 depending on the level of theory, clearly highlighting the substantive exothermic nature of this type of ozonolysis reaction.


References

[1]  C. Schwartz, J. Raible, K. Mott, P. H. Dussault, Tetrahedron 2006, 62, 10747.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVCrsbrM&md5=506df911755ce703ba33d1003ef323ccCAS |

[2]  R. Criegee, Ann. Chem. Liebigs 1953, 583, 1.
         | 1:CAS:528:DyaG2MXnvF2n&md5=3ac1716caa9faf5b014d53459652db90CAS |

[3]  R. Criegee, Angew. Chem. 1975, 87, 765.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XovV2ntw%3D%3D&md5=8b6939c178dfcd2741a5859499075520CAS |

[4]  N. M. Cain, E. R. T. Tiekink, D. K. Taylor, J. Org. Chem. 2012, 77, 3808.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktVyntLg%3D&md5=6c95f553a8e4dd6dae1caa1a2c3996a8CAS | 22423889PubMed |

[5]  W. A. Ayer, F. X. Talamas, Can. J. Chem. 1988, 66, 1675.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXjvFajtg%3D%3D&md5=872e856be4d90023d91bd56539e63dafCAS |

[6]  J. Gumulka, W. J. Szczepek, Z. Wielogorski, Tetrahedron Lett. 1979, 20, 4847.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  J. Gumulka, W. J. Szczepek, Z. A. Wielogorski, Pol. J. Chem. 1983, 57, 403.
         | 1:CAS:528:DyaL2cXlvFahtbY%3D&md5=f5ab16e0eb2009ab4cdb7e3544ce385aCAS |

[8]  D. Cremer, J. A. Pople, J. Am. Chem. Soc. 1975, 97, 1354.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXhsFGis7c%3D&md5=e46685f892ec4a179d95b23df2ed70ecCAS |

[9]  M. L. McKee, C. M. Rohlfing, J. Am. Chem. Soc. 1989, 111, 2497.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhsFentLk%3D&md5=a4e265552c862103a31259bc38b715ffCAS |

[10]  Spartan ‘08 (Wavefunction, Inc.: Irvine, CA).

[11]  D. Cremer, J. Am. Chem. Soc. 1981, 103, 3627.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXksVaju74%3D&md5=49cfd580386fd8e9cb19511751324e11CAS |

[12]  S. E. Wheeler, D. H. Ess, K. N. Houk, J. Phys. Chem. A 2008, 112, 1798.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVWitb8%3D&md5=44527715b67cff38f47825ef69d3cd9bCAS | 18247512PubMed |

[13]  Y. Zhao, O. Tishchenko, J. R. Gour, W. Li, J. J. Lutz, P. Piecuch, D. G. Truhlar, J. Phys. Chem. A 2009, 113, 5786.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkslaktbk%3D&md5=d7d6a1afe7090851ee8d9fe3b26081c2CAS | 19374412PubMed |

[14]  Mainali, L.; Mishra, D. R.; Aryal, M.M. First Principles Calculations to Study the Equilibrium Configuration of Ozone Molecule 2011, arXIV:1102.1051. Available at http://arxiv.org/abs/1102.1051

[15]  J. B. Foresman, E. Frisch, Exploring Chemistry with Electronic Structure Methods, 2nd edn 1996 (Gaussian, Inc.: Pittsburgh, PA).

[16]  W. C. D. Rathman, T. A. Claxon, A. R. Rickard, G. Marston, Phys. Chem. Chem. Phys. 1999, 1, 3981.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltlyntL8%3D&md5=65dc9dc4aa8a1f7b67493c28b29a4b0cCAS |

[17]  V. G. Khamaganov, R. A. Hites, J. Phys. Chem. A 2001, 105, 815.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvV2kuw%3D%3D&md5=68b59c14c080c5489f48a050dc9def40CAS |

[18]  D. Zhang, R. Zhang, J. Chem. Phys. 2005, 122, 114308-(1–12).

[19]  Benchmarking studies were also performed at other DFT levels of theory for the intermediate endo-exo primary ozonide (15a) and its transition state of formation (TS1). Utilising larger basis sets at the B3LYP, MO6, or wB97X-D levels again resulted in unrealistic negative activation barriers: B3LYP/6–311G* (–18.35 kJ mol–1); B3LYP/6–311++G** (–9.75 kJ mol–1); B3LYP/cc-pVTZ (–6.85 kJ mol–1); MO6/6–31G* (–32.80 kJ mol–1); MO6/6–311G* (–34.05 kJ mol–1); MO6/6–311++G** (–27.36 kJ mol–1); wB97X-D/6–31G* (–15.20 kJ mol–1); wB97X-D /6–311G* (–18.61 kJ mol–1); wB97X-D/6–311++G** (–11.94 kJ mol–1). Consequently, we conclude that employing higher DFT levels or larger basis sets appears to result in no improvement compared to the MP2/6–311G* estimations.