A Facile Eco-Friendly One-Pot Five-Component Synthesis of Novel 1,2,3-Triazole-Linked Pentasubstituted 1,4-Dihydropyridines and their Biological and Photophysical Studies
Harjinder Singh A , Jayant Sindhu A , Jitender M. Khurana A C , Chetan Sharma B and Kamal R. Aneja BA Department of Chemistry, University of Delhi, Delhi 110007, India.
B Department of Microbiology, Kurukshetra University, Kurukshetra, Haryana 136119, India.
C Corresponding author. Email: jmkhurana@chemistry.du.ac.in
Australian Journal of Chemistry 66(9) 1088-1096 https://doi.org/10.1071/CH13217
Submitted: 28 April 2013 Accepted: 17 May 2013 Published: 24 June 2013
Abstract
An eco-friendly one-pot five-component synthesis of novel 1,2,3-triazole-linked pentasubstituted 1,4-dihydropyridines under ultrasonic and microwave irradiation in polyethylene glycol (PEG) 400 is described. All newly synthesised compounds were evaluated for antibacterial activity, antifungal activity, antioxidant activity, and photophysical properties. Antimicrobial activity was evaluated against six microbial strains. All compounds exhibited antifungal activity against Aspergillus niger and Aspergillus flavus and moderate antibacterial activity against Gram positive bacteria (Staphylococcus aureus and Bacillus subtilis). Antioxidant activity was evaluated using a 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay. All compounds showed good to moderate antioxidant activity. Furthermore all new compounds showed strong fluorescence in solution.
References
[1] (a) D. J. Ramon, Y. Miguel, Angew. Chem. Int. Ed. 2005, 44, 1602.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisFWkur8%3D&md5=930bd697208ff6ad8ef121b0689b3632CAS |
(b) R. V. A. Orru, M. de Greef, Synthesis 2003, 10, 1471.
| Crossref | GoogleScholarGoogle Scholar |
(c) I. Ugi, S. Heck, Comb. Chem. High Temp. Scr. 2001, 4, 1.
| Crossref | GoogleScholarGoogle Scholar |
(d) L. Weber, K. Illgen, M. Almstetter, Synlett 1999, 1999, 366.
| Crossref | GoogleScholarGoogle Scholar |
[2] C. Safak, R. Simsek, Mini Rev. Med. Chem. 2006, 6, 747.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvFCns7c%3D&md5=fb4ab8bd7c7e88c25fb047d3d7028b8cCAS | 16842124PubMed |
[3] D. Mauzerall, F. H. Westheimer, J. Am. Chem. Soc. 1955, 77, 2261.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG28Xht1enuw%3D%3D&md5=1a46e238bc7d93f95dc817acdb09c577CAS |
[4] T. Godfraid, R. Miller, M. Wibo, Pharmacol. Rev. 1986, 38, 321.
[5] A. Sausins, G. Duburs, Heterocycles 1988, 27, 269.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXit1Wmsrw%3D&md5=761a15890ec0ce4bf7db4a4a87b9767fCAS |
[6] P. Mager, R. A. Coburn, A. J. Solo, D. J. Triggle, H. Rothe, Drug Des. Discov. 1992, 8, 273.
| 1:CAS:528:DyaK3sXntlWgtQ%3D%3D&md5=1e71855174515adbcb25c00e84cf459fCAS | 1445993PubMed |
[7] R. Mannhold, B. Jablonka, W. Voigdt, K. Schoenafinger, K. Schravan, Eur. J. Med. Chem. 1992, 27, 229.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlslWgsLk%3D&md5=91bbd6df46c09cfa9687541137a0d566CAS |
[8] A. E. Abdalla, D. Tirzite, G. Tirzitis, J. P. Roozen, Food Chem. 1999, 66, 189.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjs12htr8%3D&md5=b412fab0451b0d10795d2c27ff1acc38CAS |
[9] N. Edraki, A. R. Mehdipour, M. Khoshneviszadeh, R. Miri, Drug Discov. Today 2009, 14, 1058.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlCgt7bI&md5=5e197ec83bbe96c753526df6e95a3169CAS | 19729074PubMed |
[10] G. P. Young, Ann. Emerg. Med. 1984, 13, 712.
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2c3nvVGhsw%3D%3D&md5=d5695e73e5176375928cc8b7085e7b8fCAS | 6380352PubMed |
[11] J. Marco-Contelles, R. Leon, C. De Los Rıos, A. Samadi, M. Bartolini, V. Andrisano, O. Huertas, X. Barril, F. J. Luque, B. M. I. Lopez, M. G. Lopez, A. G. Garcıa, M. Do Carmo Carreiras, M. Villarroya, J. Med. Chem. 2009, 52, 2724.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkslCqtL4%3D&md5=58489a69e8fa24cd1e1f57d5d609bfddCAS | 19374444PubMed |
[12] S. Velazquez, R. Alvarez, C. Perez, F. Gago, C. De, J. Balzarin, M. J. Camarasa, Antivir. Chem. Chemother. 1998, 9, 481.
| 1:STN:280:DyaK1M%2Fot12jtw%3D%3D&md5=dc38fa3d44e41a348f3ab7f032a94096CAS | 9865386PubMed |
[13] M. J. Genin, D. A. Allwine, D. J. Anderson, M. R. Barbachyn, D. E. Emmert, S. A. Garmon, D. R. Graber, K. C. Grega, J. B. Hester, D. K. Hutchinson, J. Morris, R. J. Reischer, C. W. Ford, G. E. Zurenko, J. C. Hamel, R. D. Schaadt, D. Stapert, B. H. Yagi, J. Med. Chem. 2000, 43, 953.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtFWrt78%3D&md5=cc0f18c7f2612902a520e53c02ec63d5CAS | 10715160PubMed |
[14] A. K. Jordão, V. F. Ferreira, T. M. Souza, G. G. Faria, V. Machado, J. L. Abrantes, M. C. de Souza, A. C. Cunha, Bioorg. Med. Chem. 2011, 19, 1860.
| Crossref | GoogleScholarGoogle Scholar | 21376603PubMed |
[15] S. G. Agalave, S. R. Maujan, V. S. Pore, Chem. – Asian J. 2011, 6, 2696.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFSjur7P&md5=2e20531e3fc6b65846b12cccdcffcfbfCAS | 21954075PubMed |
[16] M. Kume, T. Kubota, Y. Kimura, H. Nakashimizu, K. Motokawa, M. Nakano, J. Antibiot. 1993, 46, 177.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXkt1OrtLw%3D&md5=d3e498ec0ef01758399028d33e9086b1CAS | 8436551PubMed |
[17] I. K. Boddy, G. G. Briggs, R. P. Harrison, T. H. Jones, M. J. O’Mahony, I. D. Marlow, B. G. Roberts, R. J. Willis, R. Bardsley, J. Reid, Pestic. Sci. 1996, 48, 189.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xmtlekurk%3D&md5=87dd83768437961e01c0f272507a322cCAS |
[18] K. H. Buechel, H. Gold, P. E. Frohberger, H. Kaspers, Chem. Abstr. 1975, 83, 206.
[19] W. Q. Fan, A. R. Katritzky, in Comprehensive Heterocyclic Chemistry II (Eds A. R. Katritzky, C. W. Rees, E. F. V. Scriven) 1996, Vol. 4, pp. 1–126 (Elsevier Science: Oxford).
[20] T. J. Mason, E. C. D. Meulenaer, Practical Considerations for Process Optimization, in Synthetic Organic Sonochemistry (Eds J.-L. Luche, C. Bianchi) 1998, pp. 301–328 (Plenum Press: New York, NY).
[21] (a) C. O. Kappe, Angew. Chem. Int. Ed. 2004, 43, 6250.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFWrtL7O&md5=5227f3afcade01a0afd13e15de66b110CAS |
(b) R. S. Varma, Green Chem. 1999, 1, 43.
| Crossref | GoogleScholarGoogle Scholar |
(c) A. K. Bose, M. S. Manhas, S. N. Ganguly, A. H. Sharma, B. K. Banik, Synthesis 2002, 1578.
| Crossref | GoogleScholarGoogle Scholar |
(d) D. M. P. Mingos, D. R. Baghurst, Chem. Soc. Rev. 1991, 20, 1.
| Crossref | GoogleScholarGoogle Scholar |
[22] J. Chen, S. K. Spear, J. G. Huddleston, R. D. Rogers, Green Chem. 2005, 7, 64.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXovFKgtA%3D%3D&md5=955d27e8b9d82c65b95875432a47e271CAS |
[23] K. R. Aneja, C. Sharma, R. Joshi, J. Microbiol. 2011, 4, 175.
[24] S. K. S. Al-Burtamani, M. O. Fatope, R. G. Marwah, A. K. Onifade, S. H. Al-Saidi, J. Ethnopharmocol. 2005, 96, 107.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVaqsLfO&md5=81ae15aa6ffed73d33a7c9cb1456f2c8CAS |
[25] (a) N. Koleva, T. A. VanBeek, J. P. H. Linssen, A. De Groot, L. N. Evastatieva, Phytochem. Anal. 2002, 13, 8.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtV2nt7c%3D&md5=e18d5f3c96badf3309a75c4f595a552bCAS |
(b) G. Miliauskas, P. Venskutonis, T. A. VanBeek, Food Chem. 2004, 85, 231.
| Crossref | GoogleScholarGoogle Scholar |
[26] R. H. Hans, E. M. Guantai, C. Lategan, P. J. Smith, B. Wan, S. G. Franzblau, J. Gut, P. J. Rosenthal, K. Chibale, Biol. Med. Chem. Lett. 2010, 20, 942.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVGqsrc%3D&md5=ac96d59a3389fbf3250129fecbc2efdfCAS |
[27] A. Kamal, S. Prabhakar, M. J. Ramaiah, P. V. Reddy, Ch. R. Reddy, A. Mallareddy, N. Shankaraiah, T. L. N. Reddy, S. N. C. V. L. Pushpavalli, M. Pal-Bhandra, Eur. J. Med. Chem. 2011, 46, 3820.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtV2rt7jM&md5=5bb679df96ba52126dd117f7992e95ebCAS | 21676506PubMed |