Preparation and Structures of Group 12 and 14 Element Halide–Carbene Complexes
S. M. Ibrahim Al-Rafia A , Paul A. Lummis A , Anindya K. Swarnakar A , Kelsey C. Deutsch A , Michael J. Ferguson A , Robert McDonald A and Eric Rivard A BA Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada.
B Corresponding author. Email: erivard@ualberta.ca
Australian Journal of Chemistry 66(10) 1235-1245 https://doi.org/10.1071/CH13209
Submitted: 26 April 2013 Accepted: 11 June 2013 Published: 1 August 2013
Abstract
The synthesis of a series of N-heterocyclic carbene (NHC) complexes involving zinc, cadmium, and the heavy Group 14 elements germanium, tin, and lead is reported. The direct reaction between the bulky carbene IPr (IPr = (HCNDipp)2C:, Dipp = 2,6-iPr2C6H3) and the Group 14 halide reagents GeCl4 and SnCl4 afforded the 1 : 1 complexes IPr·ECl4 (E = Ge and Sn) in high yield; similarly, ZnI2 interacted with IPr in THF to give the THF-bound complex IPr·ZnI2·THF. CdCl2 underwent divergent chemistry with IPr and the major product isolated was the imidazolium salt [IPrH][IPr·CdCl3], which could be converted into IPr·CdCl2·THF upon treatment with Tl[OTf]. In addition, the stable PbII amide adduct, IPr·PbBr(NHDipp), was prepared. Each of the new carbene–element halide adducts was treated with the hydride sources Li[BH4] and Li[HBEt3] in order to potentially access new element hydride adducts and/or clusters. In most instances scission of the element–carbene bonds transpired, except in the case of IPr·ZnI2·THF, which reacted with two equivalents of Li[BH4] to yield the thermally stable bis(borohydride) zinc complex IPr·Zn(BH4)2.
References
[1] (a) A. J. Arduengo, R. L. Harlow, M. Kline, J. Am. Chem. Soc. 1991, 113, 361.| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmt1Sjuw%3D%3D&md5=4d532b5b8e1dec052326aff735fcd07aCAS |
(b) A. J. Arduengo, H. V. Rasika Dias, R. L. Harlow, M. Kline, J. Am. Chem. Soc. 1992, 114, 5530.
| Crossref | GoogleScholarGoogle Scholar |
(c) For an early report of a stable acyclic carbene, see: A. Igau, H. Grutzmacher, A. Baceiredo, G. Bertrand, J. Am. Chem. Soc. 1988, 110, 6463.
| Crossref | GoogleScholarGoogle Scholar |
[2] (a) S. Díez-González, N. Marion, S. P. Nolan, Chem. Rev. 2009, 109, 3612.
| Crossref | GoogleScholarGoogle Scholar | 19588961PubMed |
(b) C. M. Crudden, D. P. Allen, Coord. Chem. Rev. 2004, 248, 2247.
| Crossref | GoogleScholarGoogle Scholar |
[3] (a) N. Kuhn, A. Al-Sheikh, Coord. Chem. Rev. 2005, 249, 829.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisVWrsrw%3D&md5=e9cf67bc1d529931ab7e043bafde1326CAS |
(b) R. Wolf, W. Uhl, Angew. Chem. Int. Ed. 2009, 48, 6774.
| Crossref | GoogleScholarGoogle Scholar |
(c) Y. Wang, G. H. Robinson, Chem. Commun. 2009, 5201.
(d) Y. Wang, G. H. Robinson, Inorg. Chem. 2011, 50, 12326.
| Crossref | GoogleScholarGoogle Scholar |
(e) D. Martin, M. Melaimi, M. Soleilhavoup, G. Bertrand, Organometallics 2011, 30, 5304.
| Crossref | GoogleScholarGoogle Scholar |
[4] Y. Wang, Y. Xie, P. Wei, R. B. King, H. F. Schaefer, P. v. R. Schleyer, G. H. Robinson, Science 2008, 321, 1069.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVSitrbO&md5=1be32ecaf4f369711dead57f46c930f1CAS | 18719279PubMed |
[5] (a) A. Sidiropoulos, C. Jones, A. Stasch, S. Klein, G. Frenking, Angew. Chem. Int. Ed. 2009, 48, 9701.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGru73K&md5=fdf23fca4cad135daddb1ccde6bd42d6CAS |
(b) C. Jones, A. Sidiropoulos, N. Holzmann, G. Frenking, A. Stasch, Chem. Commun. 2012, 48, 9855.
| Crossref | GoogleScholarGoogle Scholar |
[6] (a) For the recent formation of tetrelylones bis adducts (LB·E·LB; E = Si and Ge; LB = Lewis base), see: K. C. Mondal, H. W. Roesky, M. C. Schwarzer, G. Frenking, B. Niepötter, H. Wolf, R. Herbst-Irmer, D. Stalke, Angew. Chem. Int. Ed. 2013, 52, 2963.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntFCmsg%3D%3D&md5=569f834aed58d8945c9b6fc3d8a26793CAS |
(b) Y. Xiong, S. Yao, G. Tan, S. Inoue, M. Driess, J. Am. Chem. Soc. 2013, 135, 5004.
| Crossref | GoogleScholarGoogle Scholar |
[7] H. Braunschweig, R. D. Dewhurst, K. Hammond, J. Mies, K. Radacki, A. Vargas, Science 2012, 336, 1420.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xotlequrs%3D&md5=5de725f212da25530338c40e2b4c1c00CAS | 22700924PubMed |
[8] K. C. Thimer, S. M. I. Al-Rafia, M. J. Ferguson, R. McDonald, E. Rivard, Chem. Commun. 2009, 7119.
| 1:CAS:528:DC%2BD1MXhsVagsrzE&md5=999488dae8cd36880704949f5c7f916fCAS |
[9] (a) S. M. I. Al-Rafia, A. C. Malcolm, S. K. Liew, M. J. Ferguson, E. Rivard, J. Am. Chem. Soc. 2011, 133, 777.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1WqtLvL&md5=52ccf7ba3b8bee90285ea260c300f75bCAS |
(b) S. M. I. Al-Rafia, O. Shynkaruk, S. M. McDonald, S. K. Liew, M. J. Ferguson, R. McDonald, R. H. Herber, E. Rivard, Inorg. Chem. 2013, 52, 5581.
| Crossref | GoogleScholarGoogle Scholar |
[10] (a) M. Y. Abraham, Y. Wang, Y. Xie, P. Wei, H. F. Schaefer, P. v. R. Schleyer, G. H. Robinson, J. Am. Chem. Soc. 2011, 133, 8874.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsFymtL4%3D&md5=59cd8f9667eb0a7756d34c5d828a97fdCAS | 21595479PubMed |
(b) S. M. I. Al-Rafia, A. C. Malcolm, R. McDonald, M. J. Ferguson, E. Rivard, Chem. Commun. 2012, 48, 1308.
| Crossref | GoogleScholarGoogle Scholar |
[11] S. M. I. Al-Rafia, A. C. Malcolm, R. McDonald, M. J. Ferguson, E. Rivard, Angew. Chem. Int. Ed. 2011, 50, 8354.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptVehsr8%3D&md5=8ad55b0b7581c61064aac1b12ed1dc1aCAS |
[12] (a) For selected recent advances in this area, see: R. Kinjo, B. Donnadieu, M. Ali Celik, G. Frenking, G. Bertrand, Science 2011, 333, 610.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpt1yisL0%3D&md5=8f613a0f820ee39de913c763551adad7CAS | 21798945PubMed |
(b) B. Inés, M. Patil, J. Carreras, R. Goddard, W. Thiel, M. Alcarazo, Angew. Chem. Int. Ed. 2011, 50, 8400.
| Crossref | GoogleScholarGoogle Scholar |
(c) S. J. Bonyhady, D. Collis, G. Frenking, N. Holzmann, C. Jones, A. Stasch, Nat. Chem. 2010, 2, 865.
| Crossref | GoogleScholarGoogle Scholar |
(d) J. J. Weigand, K.-O. Feldmann, F. D. Henne, J. Am. Chem. Soc. 2010, 132, 16321.
| Crossref | GoogleScholarGoogle Scholar |
(e) C. L. Dorsey, B. M. Squires, T. W. Hudnall, Angew. Chem. Int. Ed. 2013, 52, 4462.
| Crossref | GoogleScholarGoogle Scholar |
[13] L. Jafarpour, E. D. Stevens, S. P. Nolan, J. Organomet. Chem. 2000, 606, 49.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmsFKrt7s%3D&md5=c4411da98b54ba6a37e1694d3991f868CAS |
[14] (a) T. R. Jensen, C. P. Schaller, M. A. Hillmyer, W. B. Tolman, J. Organomet. Chem. 2005, 690, 5881.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1CmtLbM&md5=883447d21dec5d79aa8cd3b36997ad31CAS |
(b) B. Bantu, G. Manohar Pawar, U. Decker, K. Wurst, A. M. Schmidt, M. R. Buchmeiser, Chemistry 2009, 15, 3103.
| Crossref | GoogleScholarGoogle Scholar |
(c) P. L. Arnold, I. J. Casely, Z. R. Turner, R. Bellabarba, R. B. Tooze, Dalton Trans. 2009, 7236,
(d) Y. Lee, B. Li, A. H. Hoveyda, J. Am. Chem. Soc. 2009, 131, 11625.
| Crossref | GoogleScholarGoogle Scholar |
(e) X. Liu, C. Cao, Y. Li, P. Guan, L. Yang, Y. Shi, Synlett 2012, 23, 1343.
| Crossref | GoogleScholarGoogle Scholar |
(f) For a report of a carbene-zinc catalyst which activates CO2, see: O. Jacquet, X. Frogneux, C. Das Neves Gomes, T. Cantat, Chem. Sci. 2013, 4, 2127.
| Crossref | GoogleScholarGoogle Scholar |
[15] C. Xu, R. T. Beeler, G. J. Grzybowski, A. V. G. Chizmeshya, D. J. Smith, J. Menéndez, J. Kouvetakis, J. Am. Chem. Soc. 2012, 134, 20756.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVCjur%2FL&md5=533d20d23d36900d553448ae498cf128CAS | 23237361PubMed |
[16] H.-J. Schönherr, H.-W. Wanzlick, Chem. Ber. 1970, 103, 1037.
| Crossref | GoogleScholarGoogle Scholar |
[17] For a recent review of Group 12 element carbene complexes, see: S. Budagumpi, S. Endud, Organometallics 2013, 32, 1537.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtV2lt7k%3D&md5=9ed028bbf3e5fa2d83133edf7a487830CAS |
[18] (a) N. P. Mankad, D. S. Laitar, J. P. Sadighi, Organometallics 2004, 23, 3369.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXks1agtbk%3D&md5=08fdc164a3f03d9cbc32f1f6e50f5aa2CAS |
(b) E. Y. Tsui, P. Müller, J. P. Sadighi, Angew. Chem. Int. Ed. 2008, 47, 8937.
| Crossref | GoogleScholarGoogle Scholar |
(c) C. H. Lee, T. R. Cook, D. G. Nocera, Inorg. Chem. 2011, 50, 714.
| Crossref | GoogleScholarGoogle Scholar |
(d) C. D. Abernethy, R. J. Baker, M. L. Cole, A. J. Davies, C. Jones, Transition Met. Chem. 2003, 28, 296.
| Crossref | GoogleScholarGoogle Scholar |
(e) A. Rit, T. P. Spaniol, L. Maron, J. Okuda, Angew. Chem. Int. Ed. 2013, 52, 4664.
| Crossref | GoogleScholarGoogle Scholar |
[19] A. Doddi, C. Gemel, R. W. Siedel, M. Winter, R. A. Fischer, Polyhedron 2013, 52, 1103.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVOqtb7F&md5=262f325400ea06ec30eb1e9a09bac8f3CAS |
[20] For the synthesis of IMes·ZnCl2·THF (IMes = [(HCNMes)2C: Mes = 2,4,6-Me3C6H2), see: D. Wang, K. Wurst, M. Buchmeiser, J. Organomet. Chem. 2004, 689, 2123.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktVWjurc%3D&md5=d7cd5caa3df25eebe584bc5d436086a6CAS |
[21] In one case, crystals of the THF-free adduct IPr·ZnI2 were isolated from a reaction mixture containing 1 and unreacted IPr. See the Supplementary Material for full crystallographic details of IPr·ZnI2 (CCDC 934972).
[22] M. Ma, A. Sidiropoulos, L. Ralte, A. Stasch, C. Jones, Chem. Commun. 2013, 49, 48.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslCntrnL&md5=116941c3431e601a647cbc8149d4457cCAS |
[23] A. J. Arduengo, J. R. Goerlich, F. Davidson, W. J. Marshall, Z. Naturforsch 1999, 54b, 1350.
[24] Z. Zhu, R. C. Fischer, J. C. Fettinger, E. Rivard, M. Brynda, P. P. Power, J. Am. Chem. Soc. 2006, 128, 15068.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFKrs7bJ&md5=6ded034d04a29321624d5661d364c756CAS | 17117840PubMed |
[25] (a) For related examples of backbone C-H activation in NHC, see: J. I. Bates, P. Kennepohl, D. P. Gates, Angew. Chem. Int. Ed. 2009, 48, 9844.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsF2hsrvE&md5=23132a6d8203ffe2d32a2a0bd7feaef0CAS |
(b) Y. Wang, Y. Xie, M. Y. Abraham, R. J. Gillard, Y. Wang, Y. Xie, M. Y. Abraham, R. J. Gillard, Y. Wang, Y. Xie, M. Y. Abraham, R. J. Gillard, Organometallics 2010, 29, 4778.
| Crossref | GoogleScholarGoogle Scholar |
[26] We have noted that IPr and Cl2Ge·dioxane do react in THF to give spectroscopically pure IPr·GeCl2 (by 1H NMR) when the reaction times are limited to 30 min.
[27] (a) R. J. Baker, A. J. Davies, C. Jones, M. Kloth, J. Organomet. Chem. 2002, 656, 203.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xls1Gru74%3D&md5=787e65026306054415f024698c8b5ae9CAS |
(b) E. D. Blue, T. B. Gunnoe, J. F. Peterson, P. D. Boyle, J. Organomet. Chem. 2006, 691, 5988.
| Crossref | GoogleScholarGoogle Scholar |
(c) R. S. Ghadwal, R. Azhakar, H. W. Roesky, K. Pröpper, B. Dittrich, C. Goedecke, G. Frenking, Chem. Commun. 2012, 48, 8186.
| Crossref | GoogleScholarGoogle Scholar |
[28] S. Pelz, F. Mohr, Organometallics 2011, 30, 383.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFyntQ%3D%3D&md5=ea3b11855966e0f9da82a64d3474babdCAS |
[29] (a) R. S. Ghadwal, H. W. Roesky, S. Merkel, J. Henn, D. Stalke, Angew. Chem. Int. Ed. 2009, 48, 5683.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXoslOrtb8%3D&md5=b4fdc719ef0590cea0e288fbdb266b7fCAS |
(b) A. C. Filippou, O. Chernov, G. Schnakenburg, Angew. Chem. Int. Ed. 2009, 48, 5687.
| Crossref | GoogleScholarGoogle Scholar |
[30] R. S. Ghadwal, S. S. Sen, H. W. Roesky, G. Tavcar, S. Merkel, D. Stalke, Organometallics 2009, 28, 6374.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1KrtrbO&md5=ed0fc3bacc70f06799d4647a86776114CAS |
[31] R. D. Shannon, Acta Crystallogr. 1976, 32A, 751.
[32] S. M. I. Al-Rafia, R. McDonald, M. J. Ferguson, E. Rivard, Chemistry 2012, 18, 13810.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlKis7nF&md5=9701681e02d6c8128e6f00eb6b5456c7CAS |
[33] F. Stabenow, W. Saak, M. Weidenbruch, Chem. Commun. 1999, 1131.
| 1:CAS:528:DyaK1MXjsFWgurg%3D&md5=8f96e9d112e02fcff5b811cdf9021b5bCAS |
[34] Currently there are no examples of stable Pb–H bonds involving lead in the +2 state: L. Pu, B. Twamley, P. P. Power, J. Am. Chem. Soc. 2000, 122, 3524.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhvVyku78%3D&md5=c71983948c70f04a762b92cc93c9eb2fCAS |
[35] J. Monot, M. Makhlouf Brahmi, S. -H Ueng, C. Robert, M. Desage-El Murr, D. P. Curran, M. Malarcia, L. Fensterrbank, E. Lacôte, Org. Lett. 2009, 11, 4914.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1SqtL7L&md5=f36d6d1a2823482e58c28a8f81ff7019CAS | 19799407PubMed |
[36] (a) S. P. Kolesnikov, I. S. Rogozhin, O. M. Nefedov, Izv. Akad. Nauk SSSR [Khim] 1974, 10, 2379.
(b) T. Fjeldberg, A. Halland, B. E. R. Schilling, M. F. Lappert, A. J. Thorne, J. Chem. Soc., Dalton Trans. 1986, 1551,
[37] A. P. Singh, R. S. Ghadwal, H. W. Roesky, J. J. Holstein, B. Dittrich, J.-P. Demers, V. Chevelkov, A. Lange, Chem. Commun. 2012, 48, 7574.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xps1Oltrk%3D&md5=cc877ba27bc152da97f4321b418f1076CAS |
[38] (a) G. A. Koutsantonis, F. C. Iee, C. L. Raston, J. Chem. Soc. Chem. Commun. 1975, 1994.
(b) R. J. Gilliard, M. Y. Abraham, Y. Wang, P. Wei, X. Xie, B. Quillian, H. F. Schaefer, P. v. R. Schleyer, G. H. Robinson, J. Am. Chem. Soc. 2012, 134, 9953.
| Crossref | GoogleScholarGoogle Scholar |
[39] G. D. Barbaras, C. Dillard, A. E. Finholt, T. Wartik, K. E. Wilzbach, H. I. Schlesinger, J. Am. Chem. Soc. 1951, 73, 4585.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG38Xis1Snug%3D%3D&md5=2025c978c979308c6d963ba16fb1eaf0CAS |
[40] (a) H. Nöth, E. Wiberg, L. P. Winter, Z. Anorg. Allg. Chem. 1969, 370, 209.
| Crossref | GoogleScholarGoogle Scholar |
(b) M. Tajbakhsh, M. M. Lakouraj, F. Mohanazadeh, A. Ahmadi-Nejhad, Synth. Commun. 2003, 33, 229.
| Crossref | GoogleScholarGoogle Scholar |
[41] A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen, F. J. Timmers, Organometallics 1996, 15, 1518.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhtVerur0%3D&md5=32bd3edcd3b0c9cb1240001cb646da4fCAS |
[42] J. T. Patton, S. C. Feng, K. A. Abboud, Organometallics 2001, 20, 3399.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvVChtLo%3D&md5=e4fa57578ebfd4541a7cc99f2f2088a3CAS |
[43] Y. Wang, B. Quillian, P. Wei, C. S. Wannere, Y. Xie, R. B. King, H. F. Schaefer, P. v. R. Schleyer, G. H. Robinson, J. Am. Chem. Soc. 2007, 129, 12412.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVGqt7jK&md5=b8bc420b33a832098c10c49b18e87edcCAS | 17887683PubMed |
[44] H. Hope, Prog. Inorg. Chem. 1994, 41, 1.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXjtFWqsbg%3D&md5=bb9456bff3ed5bc00f18ae3547099f99CAS |
[45] G. M. Sheldrick, SADABS, version 2008/1; Universität Göttingen: Göttingen, Germany, 2008.
[46] G. M. Sheldrick, TWINABS, version 2008/2; Universität Göttingen: Göttingen, Germany, 2008.
[47] G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112.
[48] A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, R. Spagna, J. Appl. Cryst. 1999, 32, 115.
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhsFOrsbo%3D&md5=55cf028ec17bfae20ae728ca395b451cCAS |
[49] G. M. Sheldrick, CELL_NOW, version 2008/2; Universität Göttingen: Göttingen, Germany, 2008.
[50] G. M. Sheldrick, SAINT, version 7.68A; Bruker AXS Inc.: Madison WI, 2008.